3,988 research outputs found
Influence of realistic parameters on state-of-the-art LWFA experiments
We examine the influence of non-ideal plasma-density and non-Gaussian
transverse laser-intensity profiles in the laser wakefield accelerator
analytically and numerically. We find that the characteristic amplitude and
scale length of longitudinal density fluctuations impacts on the final energies
achieved by electron bunches. Conditions that minimize the role of the
longitudinal plasma density fluctuations are found. The influence of higher
order Laguerre-Gaussian laser pulses is also investigated. We find that higher
order laser modes typically lead to lower energy gains. Certain combinations of
higher order modes may, however, lead to higher electron energy gains.Comment: 16 pages, 6 figures; Accepted for publication in Plasma Physics and
Controlled Fusio
Spanning Trees on Graphs and Lattices in d Dimensions
The problem of enumerating spanning trees on graphs and lattices is
considered. We obtain bounds on the number of spanning trees and
establish inequalities relating the numbers of spanning trees of different
graphs or lattices. A general formulation is presented for the enumeration of
spanning trees on lattices in dimensions, and is applied to the
hypercubic, body-centered cubic, face-centered cubic, and specific planar
lattices including the kagom\'e, diced, 4-8-8 (bathroom-tile), Union Jack, and
3-12-12 lattices. This leads to closed-form expressions for for these
lattices of finite sizes. We prove a theorem concerning the classes of graphs
and lattices with the property that
as the number of vertices , where is a finite
nonzero constant. This includes the bulk limit of lattices in any spatial
dimension, and also sections of lattices whose lengths in some dimensions go to
infinity while others are finite. We evaluate exactly for the
lattices we considered, and discuss the dependence of on d and the
lattice coordination number. We also establish a relation connecting to the free energy of the critical Ising model for planar lattices .Comment: 28 pages, latex, 1 postscript figure, J. Phys. A, in pres
Spanning trees on the Sierpinski gasket
We obtain the numbers of spanning trees on the Sierpinski gasket
with dimension equal to two, three and four. The general expression for the
number of spanning trees on with arbitrary is conjectured. The
numbers of spanning trees on the generalized Sierpinski gasket
with and are also obtained.Comment: 20 pages, 8 figures, 1 tabl
Theory of impedance networks: The two-point impedance and LC resonances
We present a formulation of the determination of the impedance between any
two nodes in an impedance network. An impedance network is described by its
Laplacian matrix L which has generally complex matrix elements. We show that by
solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the
effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p}
- u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically
equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting
of inductances (L) and capacitances (C), the formulation leads to the
occurrence of resonances at frequencies associated with the vanishing of
lambda_a. This curious result suggests the possibility of practical
applications to resonant circuits. Our formulation is illustrated by explicit
examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63)
correcte
Uniform tiling with electrical resistors
The electric resistance between two arbitrary nodes on any infinite lattice
structure of resistors that is a periodic tiling of space is obtained. Our
general approach is based on the lattice Green's function of the Laplacian
matrix associated with the network. We present several non-trivial examples to
show how efficient our method is. Deriving explicit resistance formulas it is
shown that the Kagom\'e, the diced and the decorated lattice can be mapped to
the triangular and square lattice of resistors. Our work can be extended to the
random walk problem or to electron dynamics in condensed matter physics.Comment: 22 pages, 14 figure
A Multicriteria Analysis on the Strategies to Open Taiwan's Mobile Virtual Network Operators Services
[[abstract]]This study investigates the trends followed by MVNOs (Mobile Virtual Network Operators) in the last three years and analyzes the strategies that can contribute to the success of Taiwan's telecommunications industry and marketing. We apply the method and concept of PATTERN (Planning Assistance Through Technical Evaluation of Relevance Number) to establish relevant systems for searching out the key successful factors of strategies to attract MVNOs. We also use the fuzzy Multi-Criteria Decision Making (MCDM) method for analyzing the different preference of a decision group in the criteria weights and for ranking the alternatives in a fuzzy environment in order to provide a strategy scheme. These results provide a reference to assist telecommunications operators, 3G license owners, potential MVNOs, and equipment manufacturers when working out business plans.[[incitationindex]]SCI[[booktype]]紙
Effects of anharmonic strain on phase stability of epitaxial films and superlattices: applications to noble metals
Epitaxial strain energies of epitaxial films and bulk superlattices are
studied via first-principles total energy calculations using the local-density
approximation. Anharmonic effects due to large lattice mismatch, beyond the
reach of the harmonic elasticity theory, are found to be very important in
Cu/Au (lattice mismatch 12%), Cu/Ag (12%) and Ni/Au (15%). We find that
is the elastically soft direction for biaxial expansion of Cu and Ni, but it is
for large biaxial compression of Cu, Ag, and Au. The stability of
superlattices is discussed in terms of the coherency strain and interfacial
energies. We find that in phase-separating systems such as Cu-Ag the
superlattice formation energies decrease with superlattice period, and the
interfacial energy is positive. Superlattices are formed easiest on (001) and
hardest on (111) substrates. For ordering systems, such as Cu-Au and Ag-Au, the
formation energy of superlattices increases with period, and interfacial
energies are negative. These superlattices are formed easiest on (001) or (110)
and hardest on (111) substrates. For Ni-Au we find a hybrid behavior:
superlattices along and like in phase-separating systems, while for
they behave like in ordering systems. Finally, recent experimental
results on epitaxial stabilization of disordered Ni-Au and Cu-Ag alloys,
immiscible in the bulk form, are explained in terms of destabilization of the
phase separated state due to lattice mismatch between the substrate and
constituents.Comment: RevTeX galley format, 16 pages, includes 9 EPS figures, to appear in
Physical Review
Angular Dependences of Third Harmonic Generation from Microdroplets
We present experimental and theoretical results for the angular dependence of
third harmonic generation (THG) of water droplets in the micrometer range (size
parameter ). The THG signal in - and -polarization obtained
with ultrashort laser pulses is compared with a recently developed nonlinear
extension of classical Mie theory including multipoles of order .
Both theory and experiment yield over a wide range of size parameters
remarkably stable intensity maxima close to the forward and backward direction
at ``magic angles''. In contrast to linear Mie scattering, both are of
comparable intensity.Comment: 4 pages, RevTeX, 3 figures available on request from
[email protected], submitted to PR
- …
