193,454 research outputs found

    On bosonic limits of two recent supersymmetric extensions of the Harry Dym hierarchy

    Full text link
    Two generalized Harry Dym equations, recently found by Brunelli, Das and Popowicz in the bosonic limit of new supersymmetric extensions of the Harry Dym hierarchy [J. Math. Phys. 44:4756--4767 (2003)], are transformed into previously known integrable systems: one--into a pair of decoupled KdV equations, the other one--into a pair of coupled mKdV equations from a bi-Hamiltonian hierarchy of Kupershmidt.Comment: 7 page

    Design and Construction of the 3.2 Mev High Voltage Column for Darht II

    Get PDF
    A 3.2 MeV injector has been designed and built for the Darht II Project at Los Alamos Lab. The installation of the complete injector system is nearing completion at this time. The requirements for the injector are to produce a 3.2 MeV, 2000 ampere electron pulse with a flattop width of at least 2-microseconds and emittance of less than 0.15 p cm-rad normalized. A large high voltage column has been built and installed. The column is vertically oriented, is 4.4 meters long, 1.2 meters in diameter, and weights 5700 kilograms. A novel method of construction has been employed which utilizes bonded mycalex insulating rings. This paper will describe the design, construction, and testing completed during construction. Mechanical aspects of the design will be emphasized.Comment: 3 pages, 4 figures, Linac 200

    Investigation of Micro Porosity Sintered wick in Vapor Chamber for Fan Less Design

    Get PDF
    Micro Porosity Sintered wick is made from metal injection molding processes, which provides a wick density with micro scale. It can keep more than 53 % working fluid inside the wick structure, and presents good pumping ability on working fluid transmission by fine infiltrated effect. Capillary pumping ability is the important factor in heat pipe design, and those general applications on wick structure are manufactured with groove type or screen type. Gravity affects capillary of these two types more than a sintered wick structure does, and mass heat transfer through vaporized working fluid determines the thermal performance of a vapor chamber. First of all, high density of porous wick supports high transmission ability of working fluid. The wick porosity is sintered in micro scale, which limits the bubble size while working fluid vaporizing on vapor section. Maximum heat transfer capacity increases dramatically as thermal resistance of wick decreases. This study on permeability design of wick structure is 0.5 - 0.7, especially permeability (R) = 0.5 can have the best performance, and its heat conductivity is 20 times to a heat pipe with diameter (Phi) = 10mm. Test data of this vapor chamber shows thermal performance increases over 33 %.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions
    corecore