3,974 research outputs found
Expected seismicity and the seismic noise environment of Europa
Seismic data will be a vital geophysical constraint on internal structure of
Europa if we land instruments on the surface. Quantifying expected seismic
activity on Europa both in terms of large, recognizable signals and ambient
background noise is important for understanding dynamics of the moon, as well
as interpretation of potential future data. Seismic energy sources will likely
include cracking in the ice shell and turbulent motion in the oceans. We define
a range of models of seismic activity in Europa's ice shell by assuming each
model follows a Gutenberg-Richter relationship with varying parameters. A range
of cumulative seismic moment release between and Nm/yr is
defined by scaling tidal dissipation energy to tectonic events on the Earth's
moon. Random catalogs are generated and used to create synthetic continuous
noise records through numerical wave propagation in thermodynamically
self-consistent models of the interior structure of Europa. Spectral
characteristics of the noise are calculated by determining probabilistic power
spectral densities of the synthetic records. While the range of seismicity
models predicts noise levels that vary by 80 dB, we show that most noise
estimates are below the self-noise floor of high-frequency geophones, but may
be recorded by more sensitive instruments. The largest expected signals exceed
background noise by 50 dB. Noise records may allow for constraints on
interior structure through autocorrelation. Models of seismic noise generated
by pressure variations at the base of the ice shell due to turbulent motions in
the subsurface ocean may also generate observable seismic noise.Comment: 24 pages, 11 figures, Added in supplementary information from
revision submission, including 3 audio files with sonification of Europa
noise records. To view attachments, please download and extract the gzipped
tar source file listed under "Other formats
Atomic ionization by sterile-to-active neutrino conversion and constraints on dark matter sterile neutrinos with germanium detectors
The transition magnetic moment of a sterile-to-active neutrino conversion
gives rise to not only radiative decay of a sterile neutrino, but also its
non-standard interaction (NSI) with matter. For sterile neutrinos of keV-mass
as dark matter candidates, their decay signals are actively searched for in
cosmic X-ray spectra. In this work, we consider the NSI that leads to atomic
ionization, which can be detected by direct dark matter experiments. It is
found that this inelastic scattering process for a nonrelativistic sterile
neutrino has a pronounced enhancement in the differential cross section at
energy transfer about half of its mass, manifesting experimentally as peaks in
the measurable energy spectra. The enhancement effects gradually smear out as
the sterile neutrino becomes relativistic. Using data taken with germanium
detectors that have fine energy resolution in keV and sub-keV regimes,
constraints on sterile neutrino mass and its transition magnetic moment are
derived and compared with those from astrophysical observations
Cold N+NH Collisions in a Magnetic Trap
We present an experimental and theoretical study of atom-molecule collisions
in a mixture of cold, trapped atomic nitrogen and NH molecules at a temperature
of ~mK. We measure a small N+NH trap loss rate coefficient of
~cms.
Accurate quantum scattering calculations based on {\it ab initio} interaction
potentials are in agreement with experiment and indicate the magnetic dipole
interaction to be the dominant loss mechanism. Our theory further indicates the
ratio of N+NH elastic to inelastic collisions remains large () into the
mK regime
Veterinarians in the UK on the use of non-steroidal anti-inflammatory drugs (NSAIDs) for post-disbudding analgesia of calves
<p>Top 20 down-regulated genes after DAPT treatment in P0 Lfng-GFP<sup>+</sup> cells.</p
Little Hierarchy, Little Higgses, and a Little Symmetry
Little Higgs theories are an attempt to address the little hierarchy problem,
i.e., the tension between the naturalness of the electroweak scale and the
precision measurements showing no evidence for new physics up to 5-10 TeV. In
little Higgs theories, the Higgs mass-squareds are protected to the one-loop
order from the quadratic divergence. This allows the cutoff to be raised up to
\~10 TeV, beyond the scales probed by the precision data. However, strong
constraints can still arise from the contributions of the new TeV scale
particles and hence re-introduces the fine-tuning problem. In this paper we
show that a new symmetry, denoted as T-parity, under which all heavy gauge
bosons and scalar triplets are odd, can remove all the tree-level contributions
to the electroweak observables and therefore makes the little Higgs theories
completely natural. The T-parity can be manifestly implemented in a majority of
little Higgs models by following the most general construction of the low
energy effective theory a la Callan, Coleman, Wess and Zumino. In particular,
we discuss in detail how to implement the T-parity in the littlest Higgs model
based on SU(5)/SO(5). The symmetry breaking scale f can be even lower than 500
GeV if the contributions from the unknown UV physics at the cutoff are somewhat
small. The existence of -parity has drastic impacts on the phenomenology of
the little Higgs theories. The T-odd particles need to be pair-produced and
will cascade down to the lightest T-odd particle (LTP) which is stable. A
neutral LTP gives rise to missing energy signals at the colliders which can
mimic supersymmetry. It can also serve as a good dark matter candidate.Comment: 20 pages, 2 figures, RevTeX; v2: Yukawa sector in the SU(5)/SO(5)
model slightly modified. Also added comments on the Dirac mass term for the
fermionic doublet partner; v3: clarifying comments on the modified Yukawa
sector. version to appear on JHE
Recommended from our members
Magnetic Trapping of NH Molecules with 20 s Lifetimes
Buffer gas cooling is used to trap NH molecules with 1/e lifetimes exceeding 20 s. Helium vapor generated by laser desorption of a helium film is employed to thermalize 10 molecules at a temperature of 500 mK in a 3.9 T magnetic trap. Long molecule trapping times are attained through rapid pumpout of residual buffer gas. Molecules experience a helium background gas density below 1×10 cm.Engineering and Applied SciencesPhysic
- …
