235,275 research outputs found
Crystal growth and in-plane optical properties of TlBaCaCuO (n=1,2,3) superconductors
Single crystals of thallium-based cuprates with the general formula
TlBaCaCuO(n=1,2,3) have been grown by the flux
method. The superconducting transition temperatures determined by the ac
magnetic susceptibility are 92 K, 109 K, and 119 K for n=1,2,3 respectively.
X-ray diffraction measurements and EDX compositional analysis were described.
We measured in-plane optical reflectance from room temperature down to 10 K,
placing emphasis on Tl-2223. The reflectance roughly has a linear-frequency
dependence above superconducting transition temperature, but displays a
pronounced knee structure together with a dip-like feature at higher frequency
below T. Correspondingly, the ratio of the reflectances below and above
T displays a maximum and a minimum near those feature frequencies. In
particular, those features in Tl2223 appear at higher energy scale than Tl2212,
and Tl2201. The optical data are analyzed in terms of spectral function. We
discussed the physical consequences of the data in terms of both clean and
dirty limit.Comment: 8 pages, 13 figures, to be published in Phys. Rev.
Shifting with
Precision measurements at the resonance agree well with the standard
model. However, there is still a hint of a discrepancy, not so much in by
itself (which has received a great deal of attention in the past several years)
but in the forward-backward asymmetry together with . The two
are of course correlated. We explore the possibilty that these and other
effects are due to the mixing of and with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil
Quantization of static space-times
A 4-dimensional Lorentzian static space-time is equivalent to 3-dimensional
Euclidean gravity coupled to a massless Klein-field. By canonically quantizing
the coupling model in the framework of loop quantum gravity, we obtain a
quantum theory which actually describes quantized static space-times. The
Kinematical Hilbert space is the product of the Hilbert space of gravity with
that of imaginary scalar fields. It turns out that the Hamiltonian constraint
of the 2+1 model corresponds to a densely defined operator in the underlying
Hilbert space, and hence it is finite without renormalization. As a new point
of view, this quantized model might shed some light on a few physical problems
concerning quantum gravity.Comment: 14 pages, made a few modifications, added Journal-re
Spinorial Characterizations of Surfaces into 3-dimensional pseudo-Riemannian Space Forms
We give a spinorial characterization of isometrically immersed surfaces of
arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For
Lorentzian surfaces, this generalizes a recent work of the first author in
to other Lorentzian space forms. We also characterize
immersions of Riemannian surfaces in these spaces. From this we can deduce
analogous results for timelike immersions of Lorentzian surfaces in space forms
of corresponding signature, as well as for spacelike and timelike immersions of
surfaces of signature (0,2), hence achieving a complete spinorial description
for this class of pseudo-Riemannian immersions.Comment: 9 page
Information processing with topologically protected vortex memories in exciton-polariton condensates
We show that in a non-equilibrium system of an exciton-polariton condensate,
where polaritons are generated from incoherent pumping, a ring-shaped pump
allows for stationary vortex memory elements of topological charge or
. Using simple potential guides we can choose whether to copy the same
charge or invert it onto another spatially separate ring pump. Such
manipulation of binary information opens the possibility of a new type
processing using vortices as topologically protected memory components
Neutrino Mass from Triplet and Doublet Scalars at the TeV Scale
If the minimal standard model of particle interactions is extended to include
a scalar triplet with lepton number and a scalar doublet with ,
neutrino masses eV is possible,
where GeV is the electroweak symmetry breaking scale,
TeV is the typical mass of the new scalars, and GeV is a soft
lepton-number-violating parameter.Comment: 6 pages, no figur
Shubnikov-de Haas oscillations of a single layer graphene under dc current bias
Shubnikov-de Haas (SdH) oscillations under a dc current bias are
experimentally studied on a Hall bar sample of single layer graphene. In dc
resistance, the bias current shows the common damping effect on the SdH
oscillations and the effect can be well accounted for by an elevated electron
temperature that is found to be linearly dependent on the current bias. In
differential resistance, a novel phase inversion of the SdH oscillations has
been observed with increasing dc bias, namely we observe the oscillation maxima
develop into minima and vice versa. Moreover, it is found that the onset
biasing current, at which a SdH extremum is about to invert, is linearly
dependent on the magnetic field of the SdH extrema. These observations are
quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde
- …
