235,275 research outputs found

    Crystal growth and in-plane optical properties of Tl2_2Ba2_2Can1_{n-1}Cun_nOx_x (n=1,2,3) superconductors

    Full text link
    Single crystals of thallium-based cuprates with the general formula Tl2_{2}Ba2_{2}Can1_{n-1}Cun_{n}Ox_{x}(n=1,2,3) have been grown by the flux method. The superconducting transition temperatures determined by the ac magnetic susceptibility are 92 K, 109 K, and 119 K for n=1,2,3 respectively. X-ray diffraction measurements and EDX compositional analysis were described. We measured in-plane optical reflectance from room temperature down to 10 K, placing emphasis on Tl-2223. The reflectance roughly has a linear-frequency dependence above superconducting transition temperature, but displays a pronounced knee structure together with a dip-like feature at higher frequency below Tc_c. Correspondingly, the ratio of the reflectances below and above Tc_{c} displays a maximum and a minimum near those feature frequencies. In particular, those features in Tl2223 appear at higher energy scale than Tl2212, and Tl2201. The optical data are analyzed in terms of spectral function. We discussed the physical consequences of the data in terms of both clean and dirty limit.Comment: 8 pages, 13 figures, to be published in Phys. Rev.

    Shifting RbR_b with AFBbA^b_{FB}

    Get PDF
    Precision measurements at the ZZ resonance agree well with the standard model. However, there is still a hint of a discrepancy, not so much in RbR_b by itself (which has received a great deal of attention in the past several years) but in the forward-backward asymmetry AFBbA^b_{FB} together with RbR_b. The two are of course correlated. We explore the possibilty that these and other effects are due to the mixing of bLb_L and bRb_R with one or more heavy quarks.Comment: 11 pages, 1 Figure, LaTex fil

    Quantization of static space-times

    Full text link
    A 4-dimensional Lorentzian static space-time is equivalent to 3-dimensional Euclidean gravity coupled to a massless Klein-field. By canonically quantizing the coupling model in the framework of loop quantum gravity, we obtain a quantum theory which actually describes quantized static space-times. The Kinematical Hilbert space is the product of the Hilbert space of gravity with that of imaginary scalar fields. It turns out that the Hamiltonian constraint of the 2+1 model corresponds to a densely defined operator in the underlying Hilbert space, and hence it is finite without renormalization. As a new point of view, this quantized model might shed some light on a few physical problems concerning quantum gravity.Comment: 14 pages, made a few modifications, added Journal-re

    Spinorial Characterizations of Surfaces into 3-dimensional pseudo-Riemannian Space Forms

    Full text link
    We give a spinorial characterization of isometrically immersed surfaces of arbitrary signature into 3-dimensional pseudo-Riemannian space forms. For Lorentzian surfaces, this generalizes a recent work of the first author in R2,1\mathbb{R}^{2,1} to other Lorentzian space forms. We also characterize immersions of Riemannian surfaces in these spaces. From this we can deduce analogous results for timelike immersions of Lorentzian surfaces in space forms of corresponding signature, as well as for spacelike and timelike immersions of surfaces of signature (0,2), hence achieving a complete spinorial description for this class of pseudo-Riemannian immersions.Comment: 9 page

    Information processing with topologically protected vortex memories in exciton-polariton condensates

    Full text link
    We show that in a non-equilibrium system of an exciton-polariton condensate, where polaritons are generated from incoherent pumping, a ring-shaped pump allows for stationary vortex memory elements of topological charge m=1m = 1 or m=1m = -1. Using simple potential guides we can choose whether to copy the same charge or invert it onto another spatially separate ring pump. Such manipulation of binary information opens the possibility of a new type processing using vortices as topologically protected memory components

    Neutrino Mass from Triplet and Doublet Scalars at the TeV Scale

    Get PDF
    If the minimal standard model of particle interactions is extended to include a scalar triplet with lepton number L=2L=-2 and a scalar doublet with L=1L=-1, neutrino masses mνμ124v2/M5102m_\nu \sim \mu_{12}^4 v^2/M^5 \sim 10^{-2} eV is possible, where v102v \sim 10^2 GeV is the electroweak symmetry breaking scale, M1M \sim 1 TeV is the typical mass of the new scalars, and μ121\mu_{12} \sim 1 GeV is a soft lepton-number-violating parameter.Comment: 6 pages, no figur

    Shubnikov-de Haas oscillations of a single layer graphene under dc current bias

    Full text link
    Shubnikov-de Haas (SdH) oscillations under a dc current bias are experimentally studied on a Hall bar sample of single layer graphene. In dc resistance, the bias current shows the common damping effect on the SdH oscillations and the effect can be well accounted for by an elevated electron temperature that is found to be linearly dependent on the current bias. In differential resistance, a novel phase inversion of the SdH oscillations has been observed with increasing dc bias, namely we observe the oscillation maxima develop into minima and vice versa. Moreover, it is found that the onset biasing current, at which a SdH extremum is about to invert, is linearly dependent on the magnetic field of the SdH extrema. These observations are quantitatively explained with the help of a general SdH formula.Comment: 5 pages, 4 figures, A few references adde
    corecore