5,636 research outputs found

    Quantum Noise Randomized Ciphers

    Full text link
    We review the notion of a classical random cipher and its advantages. We sharpen the usual description of random ciphers to a particular mathematical characterization suggested by the salient feature responsible for their increased security. We describe a concrete system known as AlphaEta and show that it is equivalent to a random cipher in which the required randomization is effected by coherent-state quantum noise. We describe the currently known security features of AlphaEta and similar systems, including lower bounds on the unicity distances against ciphertext-only and known-plaintext attacks. We show how AlphaEta used in conjunction with any standard stream cipher such as AES (Advanced Encryption Standard) provides an additional, qualitatively different layer of security from physical encryption against known-plaintext attacks on the key. We refute some claims in the literature that AlphaEta is equivalent to a non-random stream cipher.Comment: Accepted for publication in Phys. Rev. A; Discussion augmented and re-organized; Section 5 contains a detailed response to 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 327 (2004) 28-32 /quant-ph/0310168' & 'T. Nishioka, T. Hasegawa, H. Ishizuka, K. Imafuku, H. Imai: Phys. Lett. A 346 (2005) 7

    Topology design and performance analysis of an integrated communication network

    Get PDF
    A research study on the topology design and performance analysis for the Space Station Information System (SSIS) network is conducted. It is begun with a survey of existing research efforts in network topology design. Then a new approach for topology design is presented. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. The algorithm for generating subsets is described in detail, and various aspects of the overall design procedure are discussed. Two more efficient versions of this algorithm (applicable in specific situations) are also given. Next, two important aspects of network performance analysis: network reliability and message delays are discussed. A new model is introduced to study the reliability of a network with dependent failures. For message delays, a collection of formulas from existing research results is given to compute or estimate the delays of messages in a communication network without making the independence assumption. The design algorithm coded in PASCAL is included as an appendix

    Reconstituted high-density lipoproteins promote wound repair and blood flow recovery in response to ischemia in aged mice

    Get PDF
    Background: The average population age is increasing and the incidence of age-related vascular complications is rising in parallel. Impaired wound healing and disordered ischemia-mediated angiogenesis are key contributors to age-impaired vascular complications that can lead to amputation. High-density lipoproteins (HDL) have vasculo-protective properties and augment ischemia-driven angiogenesis in young animals. We aimed to determine the effect of reconstituted HDL (rHDL) on aged mice in a murine wound healing model and the hindlimb ischemia (HLI) model. Methods: Murine wound healing model—24-month-old aged mice received topical application of rHDL (50 μg/wound/ day) or PBS (vehicle control) for 10 days following wounding. Murine HLI model—Femoral artery ligation was performed on 24-month-old mice. Mice received rHDL (40 mg/kg) or PBS, intravenously, on alternate days, 1 week pre-surgery and up to 21 days post ligation. For both models, blood flow perfusion was determined using laser Doppler perfusion imaging. Mice were sacrificed at 10 (wound healing) or 21 (HLI) days post-surgery and tissues were collected for histological and gene analyses. Results: Daily topical application of rHDL increased the rate of wound closure by Day 7 post-wounding (25 %, p < 0.05). Wound blood perfusion, a marker of angiogenesis, was elevated in rHDL treated wounds (Days 4–10 by 22–25 %, p < 0. 05). In addition, rHDL increased wound capillary density by 52.6 %. In the HLI model, rHDL infusions augmented blood flow recovery in ischemic limbs (Day 18 by 50 % and Day 21 by 88 %, p < 0.05) and prevented tissue necrosis and toe loss. Assessment of capillary density in ischemic hindlimb sections found a 90 % increase in rHDL infused animals. In vitro studies in fibroblasts isolated from aged mice found that incubation with rHDL was able to significantly increase the key pro-angiogenic mediator vascular endothelial growth factor (VEGF) protein (25 %, p < 0.05). Conclusion: rHDL can promote wound healing and wound angiogenesis, and blood flow recovery in response to ischemia in aged mice. Mechanistically, this is likely to be via an increase in VEGF. This highlights a potential role for HDL in the therapeutic modulation of age-impaired vascular complications

    A targeted gene panel that covers coding, non-coding and short tandem repeat regions improves the diagnosis of patients with neurodegenerative diseases

    Get PDF
    Genetic testing for neurodegenerative diseases (NDs) is highly challenging because of genetic heterogeneity and overlapping manifestations. Targeted-gene panels (TGPs), coupled with next-generation sequencing (NGS), can facilitate the profiling of a large repertoire of ND-related genes. Due to the technical limitations inherent in NGS and TGPs, short tandem repeat (STR) variations are often ignored. However, STR expansions are known to cause such NDs as Huntington\u27s disease and spinocerebellar ataxias type 3 (SCA3). Here, we studied the clinical utility of a custom-made TGP that targets 199 NDs and 311 ND-associated genes on 118 undiagnosed patients. At least one known or likely pathogenic variation was found in 54 patients; 27 patients demonstrated clinical profiles that matched the variants; and 16 patients whose original diagnosis were refined. A high concordance of variant calling were observed when comparing the results from TGP and whole-exome sequencing of four patients. Our in-house STR detection algorithm has reached a specificity of 0.88 and a sensitivity of 0.82 in our SCA3 cohort. This study also uncovered a trove of novel and recurrent variants that may enrich the repertoire of ND-related genetic markers. We propose that a combined comprehensive TGPs-bioinformatics pipeline can improve the clinical diagnosis of NDs

    Distinguishing between optical coherent states with imperfect detection

    Full text link
    Several proposed techniques for distinguishing between optical coherent states are analyzed under a physically realistic model of photodetection. Quantum error probabilities are derived for the Kennedy receiver, the Dolinar receiver and the unitary rotation scheme proposed by Sasaki and Hirota for sub-unity detector efficiency. Monte carlo simulations are performed to assess the effects of detector dark counts, dead time, signal processing bandwidth and phase noise in the communication channel. The feedback strategy employed by the Dolinar receiver is found to achieve the Helstrom bound for sub-unity detection efficiency and to provide robustness to these other detector imperfections making it more attractive for laboratory implementation than previously believed

    Does nonlinear metrology offer improved resolution? Answers from quantum information theory

    Get PDF
    A number of authors have suggested that nonlinear interactions can enhance resolution of phase shifts beyond the usual Heisenberg scaling of 1/n, where n is a measure of resources such as the number of subsystems of the probe state or the mean photon number of the probe state. These suggestions are based on calculations of `local precision' for particular nonlinear schemes. However, we show that there is no simple connection between the local precision and the average estimation error for these schemes, leading to a scaling puzzle. This puzzle is partially resolved by a careful analysis of iterative implementations of the suggested nonlinear schemes. However, it is shown that the suggested nonlinear schemes are still limited to an exponential scaling in \sqrt{n}. (This scaling may be compared to the exponential scaling in n which is achievable if multiple passes are allowed, even for linear schemes.) The question of whether nonlinear schemes may have a scaling advantage in the presence of loss is left open. Our results are based on a new bound for average estimation error that depends on (i) an entropic measure of the degree to which the probe state can encode a reference phase value, called the G-asymmetry, and (ii) any prior information about the phase shift. This bound is asymptotically stronger than bounds based on the variance of the phase shift generator. The G-asymmetry is also shown to directly bound the average information gained per estimate. Our results hold for any prior distribution of the shift parameter, and generalise to estimates of any shift generated by an operator with discrete eigenvalues.Comment: 8 page

    Doping dependence and anisotropy of minority electron mobility in molecular beam epitaxy-grown p type GaInP

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1063/1.4902316Direct imaging of minority electron transport via the spatially resolved recombination luminescence signature has been used to determine carrier diffusion lengths in GaInP as a function of doping. Minority electron mobility values are determined by performing time resolved photoluminescence measurements of carrier lifetime on the same samples. Values at 300 K vary from~2000 to 400 cm2/V s and decrease with increasing doping. Anisotropic diffusion lengths and strongly polarized photoluminescence are observed, resulting from lateral composition modulation along the [110] direction. We report anisotropic mobility values associated with carrier transport parallel and perpendicular to the modulation direction.USDOEAC05-06OR23100DEAC36-08GO28308This work was supported at the Naval Postgraduate School in part by National Science Foundation Grant No. DMR-0804527 and in part by the NPS Energy Academic Group with funding from the Navy Energy Coordination Office. T.C. acknowledges support from the Department of Energy, Office of Science Graduate Fellowship Program (DOE SCGF), made possible in part by the American Recovery and Reinvestment Act of 2009, administered by ORISE-ORAU under Control No. DE-AC05-06OR23100. TRPL work at NREL was supported by the Department of Energy Office of Science, Basic Energy Sciences under DEAC36-08GO28308

    Growth, processing, and optical properties of epitaxial Er_2O_3 on silicon

    Get PDF
    Erbium-doped materials have been investigated for generating and amplifying light in low-power chip-scale optical networks on silicon, but several effects limit their performance in dense microphotonic applications. Stoichiometric ionic crystals are a potential alternative that achieve an Er^(3+) density 100× greater. We report the growth, processing, material characterization, and optical properties of single-crystal Er_2O_3 epitaxially grown on silicon. A peak Er^(3+) resonant absorption of 364 dB/cm at 1535nm with minimal background loss places a high limit on potential gain. Using high-quality microdisk resonators, we conduct thorough C/L-band radiative efficiency and lifetime measurements and observe strong upconverted luminescence near 550 and 670 nm

    Expression, crystallization and preliminary crystallographic study of human coronavirus HKU1 nonstructural protein 9

    Get PDF
    Human coronavirus HKU1 (HCoV-HKU1) belongs to coronavirus group II and encodes 16 nonstructural proteins (nsps) which mediate genome replication and transcription. Among these nsps, nsp9 has been shown to possess single-stranded DNA/RNA-binding properties. The gene that encodes HCoV-HKU1 nsp9 was cloned and expressed in Escherichia coli and the protein was subjected to crystallization trials. The crystals diffracted to 2.7 A resolution and belonged to space group P2(1)2(1)2, with unit-cell parameters a = 83.5, b = 88.4, c = 31.2 A, alpha = beta = gamma = 90 degrees and two molecules per asymmetric unit.published_or_final_versio
    corecore