8,843 research outputs found
Deutsch-Jozsa algorithm as a test of quantum computation
A redundancy in the existing Deutsch-Jozsa quantum algorithm is removed and a
refined algorithm, which reduces the size of the register and simplifies the
function evaluation, is proposed. The refined version allows a simpler analysis
of the use of entanglement between the qubits in the algorithm and provides
criteria for deciding when the Deutsch-Jozsa algorithm constitutes a meaningful
test of quantum computation.Comment: 10 pages, 2 figures, RevTex, Approved for publication in Phys Rev
Normal modes in an overmoded circular waveguide coated with lossy material
The normal modes in an overmoded waveguide coated with a lossy material are analyzed, particularly for their attenuation properties as a function of coating material, layer thickness, and frequency. When the coating material is not too lossy, the low-order modes are highly attenuated even with a thin layer of coating. This coated guide serves as a mode suppressor of the low-order modes, which can be particularly useful for reducing the radar cross section (RCS) of a cavity structure such as a jet inlet. When the coating material is very lossy, low-order modes fall into two distinct groups: highly and lowly attenuated modes. However, as a/lambda (a = radius of the cylinder; lambda = the free-space wavelength) increases, the separation between these two groups becomes less distinctive. The attenuation constants of most of the low-order modes become small, and decrease as a function of lambda sup 2/a sup 3
Numerical methods for analyzing electromagnetic scattering
Attenuation properties of the normal modes in an overmoded waveguide coated with a lossy material were analyzed. It is found that the low-order modes, can be significantly attenuated even with a thin layer of coating if the coating material is not too lossy. A thinner layer of coating is required for large attenuation of the low-order modes if the coating material is magnetic rather than dielectric. The Radar Cross Section (RCS) from an uncoated circular guide terminated by a perfect electric conductor was calculated and compared with available experimental data. It is confirmed that the interior irradiation contributes to the RCS. The equivalent-current method based on the geometrical theory of diffraction (GTD) was chosen for the calculation of the contribution from the rim diffraction. The RCS reduction from a coated circular guide terminated by a PEC are planned schemes for the experiments are included. The waveguide coated with a lossy magnetic material is suggested as a substitute for the corrugated waveguide
Numerical methods for analyzing electromagnetic scattering
Numerical methods to analyze electromagnetic scattering are presented. The dispersions and attenuations of the normal modes in a circular waveguide coated with lossy material were completely analyzed. The radar cross section (RCS) from a circular waveguide coated with lossy material was calculated. The following is observed: (1) the interior irradiation contributes to the RCS much more than does the rim diffraction; (2) at low frequency, the RCS from the circular waveguide terminated by a perfect electric conductor (PEC) can be reduced more than 13 dB down with a coating thickness less than 1% of the radius using the best lossy material available in a 6 radius-long cylinder; (3) at high frequency, a modal separation between the highly attenuated and the lowly attenuated modes is evident if the coating material is too lossy, however, a large RCS reduction can be achieved for a small incident angle with a thin layer of coating. It is found that the waveguide coated with a lossy magnetic material can be used as a substitute for a corrugated waveguide to produce a circularly polarized radiation yield
Optimal estimation of quantum observables
We consider the problem of estimating the ensemble average of an observable
on an ensemble of equally prepared identical quantum systems. We show that,
among all kinds of measurements performed jointly on the copies, the optimal
unbiased estimation is achieved by the usual procedure that consists in
performing independent measurements of the observable on each system and
averaging the measurement outcomes.Comment: Submitted to J. Math Phy
Effects of a noncoplanar biphenyldiamine on the processing and properties of addition polyimides
Addition curing polyimides, prepared from noncoplanar 2,2'-bis(trifluoromethyl) 4,4' diaminobiphenyl (BTDB) with various dianhydrides were evaluated as high temperature polymer matrix materials. T sub g of these polymers were measured by mechanical methods as well as by thermal mechanical analysis. Physical and mechanical properties as well as the thermo-oxidative stability of neat resins and the corresponding G40-600 graphite fiber reinforced composites were compared to that of PMR-II-50 and V-CAP-75
Carrier dynamics and coherent acoustic phonons in nitride heterostructures
We model generation and propagation of coherent acoustic phonons in
piezoelectric InGaN/GaN multi-quantum wells embedded in a \textit{pin} diode
structure and compute the time resolved reflectivity signal in simulated
pump-probe experiments. Carriers are created in the InGaN wells by ultrafast
pumping below the GaN band gap and the dynamics of the photoexcited carriers is
treated in a Boltzmann equation framework. Coherent acoustic phonons are
generated in the quantum well via both deformation potential electron-phonon
and piezoelectric electron-phonon interaction with photogenerated carriers,
with the latter mechanism being the dominant one. Coherent longitudinal
acoustic phonons propagate into the structure at the sound speed modifying the
optical properties and giving rise to a giant oscillatory differential
reflectivity signal. We demonstrate that coherent optical control of the
differential reflectivity can be achieved using a delayed control pulse.Comment: 14 pages, 11 figure
Extremal covariant measurements
We characterize the extremal points of the convex set of quantum measurements
that are covariant under a finite-dimensional projective representation of a
compact group, with action of the group on the measurement probability space
which is generally non-transitive. In this case the POVM density is made of
multiple orbits of positive operators, and, in the case of extremal
measurements, we provide a bound for the number of orbits and for the rank of
POVM elements. Two relevant applications are considered, concerning state
discrimination with mutually unbiased bases and the maximization of the mutual
information.Comment: 11 pages, no figure
Factoring in a Dissipative Quantum Computer
We describe an array of quantum gates implementing Shor's algorithm for prime
factorization in a quantum computer. The array includes a circuit for modular
exponentiation with several subcomponents (such as controlled multipliers,
adders, etc) which are described in terms of elementary Toffoli gates. We
present a simple analysis of the impact of losses and decoherence on the
performance of this quantum factoring circuit. For that purpose, we simulate a
quantum computer which is running the program to factor N = 15 while
interacting with a dissipative environment. As a consequence of this
interaction randomly selected qubits may spontaneously decay. Using the results
of our numerical simulations we analyze the efficiency of some simple error
correction techniques.Comment: plain tex, 18 pages, 8 postscript figure
- …
