40,380 research outputs found
On some further properties of nonzero-sum diffential games
Optimality principle and open loop-closed loop control relations in nonzero-sum differential game
Buoyancy and g-modes in young superfluid neutron stars
We consider the local dynamics of a realistic neutron star core, including
composition gradients, superfluidity and thermal effects. The main focus is on
the gravity g-modes, which are supported by composition stratification and
thermal gradients. We derive the equations that govern this problem in full
detail, paying particular attention to the input that needs to be provided
through the equation of state and distinguishing between normal and superfluid
regions. The analysis highlights a number of key issues that should be kept in
mind whenever equation of state data is compiled from nuclear physics for use
in neutron star calculations. We provide explicit results for a particular
stellar model and a specific nucleonic equation of state, making use of cooling
simulations to show how the local wave spectrum evolves as the star ages. Our
results show that the composition gradient is effectively dominated by the
muons whenever they are present. When the star cools below the superfluid
transition, the support for g-modes at lower densities (where there are no
muons) is entirely thermal. We confirm the recent suggestion that the g-modes
in this region may be unstable, but our results indicate that this instability
will be weak and would only be present for a brief period of the star's life.
Our analysis accounts for the presence of thermal excitations encoded in
entrainment between the entropy and the superfluid component. Finally, we
discuss the complete spectrum, including the normal sound waves and, in
superfluid regions, the second sound.Comment: 29 pages, 9 figures, submitted to MNRA
Distributed Stochastic Optimization over Time-Varying Noisy Network
This paper is concerned with distributed stochastic multi-agent optimization
problem over a class of time-varying network with slowly decreasing
communication noise effects. This paper considers the problem in composite
optimization setting which is more general in noisy network optimization. It is
noteworthy that existing methods for noisy network optimization are Euclidean
projection based. We present two related different classes of non-Euclidean
methods and investigate their convergence behavior. One is distributed
stochastic composite mirror descent type method (DSCMD-N) which provides a more
general algorithm framework than former works in this literature. As a
counterpart, we also consider a composite dual averaging type method (DSCDA-N)
for noisy network optimization. Some main error bounds for DSCMD-N and DSCDA-N
are obtained. The trade-off among stepsizes, noise decreasing rates,
convergence rates of algorithm is analyzed in detail. To the best of our
knowledge, this is the first work to analyze and derive convergence rates of
optimization algorithm in noisy network optimization. We show that an optimal
rate of in nonsmooth convex optimization can be obtained for
proposed methods under appropriate communication noise condition. Moveover,
convergence rates in different orders are comprehensively derived in both
expectation convergence and high probability convergence sense.Comment: 27 page
Opacities and spectra of hydrogen atmospheres of moderately magnetized neutron stars
There is observational evidence that central compact objects (CCOs) in
supernova remnants have moderately strong magnetic fields G.
Meanwhile, available models of partially ionized hydrogen atmospheres of
neutron stars with strong magnetic fields are restricted to
G. We extend the equation of state and radiative opacities, presented in
previous papers for 10^{12}\mbox{ G}\lesssim B \lesssim 10^{15} G, to weaker
fields. An equation of state and radiative opacities for a partially ionized
hydrogen plasma are obtained at magnetic fields , temperatures , and
densities typical for atmospheres of CCOs and other isolated neutron
stars with moderately strong magnetic fields. The first- and second-order
thermodynamic functions, monochromatic radiative opacities, and Rosseland mean
opacities are calculated and tabulated, taking account of partial ionization,
for 3\times10^{10}\mbox{ G}\lesssim B\lesssim 10^{12} G, K K, and a wide range of densities. Atmosphere models and spectra
are calculated to verify the applicability of the results and to determine the
range of magnetic fields and effective temperatures where the incomplete
ionization of the hydrogen plasma is important.Comment: 11 pages, 7 figures, accepted for publication in A&
Micro Balloon Actuators for Aerodynamic Control
A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been characterized in a wind tunnel to assess their suitability as aerodynamic control surfaces and flight-tested on a jet fighter to assess their resistance to varied temperatures and pressures at high velocity
The enigmatic spin evolution of PSR J0537-6910: r-modes, gravitational waves and the case for continued timing
We discuss the unique spin evolution of the young X-ray pulsar PSR
J0537-6910, a system in which the regular spin down is interrupted by glitches
every few months. Drawing on the complete timing data from the Rossi X-ray
Timing Explorer (RXTE, from 1999-2011), we argue that a trend in the
inter-glitch behaviour points to an effective braking index close to ,
much larger than expected. This value is interesting because it would accord
with the neutron star spinning down due to gravitational waves from an unstable
r-mode. We discuss to what extent this, admittedly speculative, scenario may be
consistent and if the associated gravitational-wave signal would be within
reach of ground based detectors. Our estimates suggest that one may, indeed, be
able to use future observations to test the idea. Further precision timing
would help enhance the achievable sensitivity and we advocate a joint observing
campaign between the Neutron Star Interior Composition ExploreR (NICER) and the
LIGO-Virgo network.Comment: 10 pages, 4 figures, emulate ApJ forma
Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity
We study the oscillations of relativistic stars, incorporating key physics
associated with internal composition, thermal gradients and crust elasticity.
Our aim is to develop a formalism which is able to account for the
state-of-the-art understanding of the complex physics associated with these
systems. As a first step, we build models using a modern equation of state
including composition gradients and density discontinuities associated with
internal phase-transitions (like the crust-core transition and the point where
muons first appear in the core). In order to understand the nature of the
oscillation spectrum, we carry out cooling simulations to provide realistic
snapshots of the temperature distribution in the interior as the star evolves
through adolescence. The associated thermal pressure is incorporated in the
perturbation analysis, and we discuss the presence of -modes arising as a
result of thermal effects. We also consider interface modes due to
phase-transitions and the gradual formation of the star's crust and the
emergence of a set of shear modes.Comment: 27 pages, 14 figure
- …
