15,515 research outputs found
Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors
We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors
Laser induced magnetization switching in films with perpendicular anisotropy: a comparison between measurements and a multi-macrospin model
Thermally-assisted ultra-fast magnetization reversal in a DC magnetic field
for magnetic multilayer thin films with perpendicular anisotropy has been
investigated in the time domain using femtosecond laser heating. The experiment
is set-up as an optically pumped stroboscopic Time Resolved Magneto-Optical
Kerr Effect magnetometer. It is observed that a modest laser fluence of about
0.3 mJ/square-cm induces switching of the magnetization in an applied field
much less than the DC coercivity (0.8 T) on the sub-nanosecond time-scale. This
switching was thermally-assisted by the energy from the femtosecond pump-pulse.
The experimental results are compared with a model based on the Landau
Lifschitz Bloch equation. The comparison supports a description of the reversal
process as an ultra-fast demagnetization and partial recovery followed by
slower thermally activated switching due to the spin system remaining at an
elevated temperature after the heating pulse.Comment: 8 pages, 10 figures, to be submitted to PR
ESR Study of (C_5H_{12}N)_2CuBr_4
ESR studies at 9.27, 95.4, and 289.7 GHz have been performed on
(CHN)CuBr down to 3.7 K. The 9.27 GHz data were acquired
with a single crystal and do not indicate the presence of any structural
transitions. The high frequency data were collected with a polycrystalline
sample and resolved two absorbances, consistent with two crystallographic
orientations of the magnetic sites and with earlier ESR studies performed at
300 K. Below T, our data confirm the presence of a spin singlet
ground state.Comment: 2 pages, 4 figs., submitted 23rd International Conference on Low
Temperature Physics (LT-23), Aug. 200
Approximate Minimum Diameter
We study the minimum diameter problem for a set of inexact points. By
inexact, we mean that the precise location of the points is not known. Instead,
the location of each point is restricted to a contineus region (\impre model)
or a finite set of points (\indec model). Given a set of inexact points in
one of \impre or \indec models, we wish to provide a lower-bound on the
diameter of the real points.
In the first part of the paper, we focus on \indec model. We present an
time
approximation algorithm of factor for finding minimum diameter
of a set of points in dimensions. This improves the previously proposed
algorithms for this problem substantially.
Next, we consider the problem in \impre model. In -dimensional space, we
propose a polynomial time -approximation algorithm. In addition, for
, we define the notion of -separability and use our algorithm for
\indec model to obtain -approximation algorithm for a set of
-separable regions in time
EM Decay of X(3872) as the charmonium
The recently BaBar results raise the possibility that X(3872) has negative
parity. This makes people reconsider assigning X(3872) to the state. In this paper we give a general form of the wave function of
mesons. By solving the instantaneous Bethe-Salpeter equation, we get
the mass spectrum and corresponding wave functions. We calculate
electromagnetic decay widths of the first state which we assume to be
the X(3872) particle. The results are keV, eV and keV. The ratio of branch fractions
of the second and first channel is about 0.002, which is inconsistent with the
experimental value . So X(3872) is unlikely to be a
charmonium state. In addition, we obtain a relatively large decay width for
channel which is keV.Comment: Revised versio
- …
