66,611 research outputs found

    NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System

    Full text link
    Resistively detected nuclear magnetic resonance (NMR) is observed inside the ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase diagram of a two subband electron system. The NMR signal persists up to 400 mK and is absent in other states with the same quantized Hall conductance. The nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards the ring center. These observations are consistent with the assertion of the ring-like region being a ferromagnetic state that is accompanied by collective spin excitations.Comment: 4 pages, 4 figure

    Effective spin dephasing mechanism in confined two-dimensional topological insulators

    Full text link
    A Kramers pair of helical edge states in quantum spin Hall effect (QSHE) is robust against normal dephasing but not robust to spin dephasing. In our work, we provide an effective spin dephasing mechanism in the puddles of two-dimensional (2D) QSHE, which is simulated as quantum dots modeled by 2D massive Dirac Hamiltonian. We demonstrate that the spin dephasing effect can originate from the combination of the Rashba spin-orbit coupling and electron-phonon interaction, which gives rise to inelastic backscattering in edge states within the topological insulator quantum dots, although the time-reversal symmetry is preserved throughout. Finally, we discuss the tunneling between extended helical edge states and local edge states in the QSH quantum dots, which leads to backscattering in the extended edge states. These results can explain the more robust edge transport in InAs/GaSb QSH systems.Comment: 6 pages, 3 figure

    Floquet Majorana fermions in driven hexagonal lattice systems

    Full text link
    We propose Floquet chiral topological superconducting systems hosting Floquet Majorana fermions, which consist of hexagonal lattices in proximity to superconductors with shining circularly polarized light. Specially for bilayer graphene system, we demonstrate that there exist three topological phases determined by certain parameters, namely, the amplitude and frequency of the induced light. The number of chiral Floquet Majorana edge states is confirmed by calculating Chern number analytically and energy spectrum in ribbon geometry. Moreover, this proposal is generalized to other hexagonal lattice systems, such as monolayer graphene and silicene. Notably, the parameter range of induced light to achieve the chiral Floquet Majorana edge states is experimentally feasible, and the corresponding Floquet Majorana fermions can be probed based on differential conductance using scanning tunneling spectroscopy.Comment: 9 pages, 8 figure
    corecore