120,860 research outputs found
Biometric identity-based cryptography for e-Government environment
Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols
A refined invariant subspace method and applications to evolution equations
The invariant subspace method is refined to present more unity and more
diversity of exact solutions to evolution equations. The key idea is to take
subspaces of solutions to linear ordinary differential equations as invariant
subspaces that evolution equations admit. A two-component nonlinear system of
dissipative equations was analyzed to shed light on the resulting theory, and
two concrete examples are given to find invariant subspaces associated with
2nd-order and 3rd-order linear ordinary differential equations and their
corresponding exact solutions with generalized separated variables.Comment: 16 page
Use of elastic stability analysis to explain the stress-dependent nature of soil strength
The peak and critical state strengths of sands are linearly related to the stress level, just as the frictional resistance to sliding along an interface is related to the normal force. The analogy with frictional sliding has led to the use of a ‘friction angle’ to describe the relationship between strength and stress for soils. The term ‘friction angle’ implies that the underlying mechanism is frictional resistance at the particle contacts. However, experiments and discrete element simulations indicate that the material friction angle is not simply related to the friction angle at the particle contacts. Experiments and particle-scale simulations of model sands have also revealed the presence of strong force chains, aligned with the major principal stress. Buckling of these strong force chains has been proposed as an alternative to the frictional-sliding failure mechanism. Here, using an idealized abstraction of a strong force chain, the resistance is shown to be linearly proportional to the magnitude of the lateral forces supporting the force chain. Considering a triaxial stress state, and drawing an analogy between the lateral forces and the confining pressure in a triaxial test, a linear relationship between stress level and strength is seen to emerge from the failure-by-buckling hypothesis
Analysis of security protocols using finite-state machines
This paper demonstrates a comprehensive analysis method using formal methods such as finite-state machine. First, we describe the modified version of our new protocol and briefly explain the encrypt-then-authenticate mechanism, which is regarded as more a secure mechanism than the one used in our protocol. Then, we use a finite-state verification to study the behaviour of each machine created for each phase of the protocol and examine their behaviour s together. Modelling with finite-state machines shows that the modified protocol can function correctly and behave properly even with invalid input or time delay
Forward-backward elliptic anisotropy correlation in parton cascade
A potential experimental probe, forward-backward elliptic anisotropy
correlation (), has been proposed by Liao and Koch to distinguish the
jet and true elliptic flow contribution to the measured elliptic flow ()
in relativistic heavy-ion collisions. Jet and flow fluctuation contribution to
elliptic flow is investigated within the framework of a multi-phase transport
model using the probe. We found that the correlation is
remarkably different and is about two times of that proposed by Liao and Koch.
It originates from the correlation between fluctuation of forward and backward
elliptic flow at low transverse momentum, which is mainly due to the initial
correlation between fluctuation of forward and backward eccentricity. This
results in an amendment of the by a term related to the correlation
between fluctuation of forward and backward elliptic flow. Our results suggest
that a suitable rapidity gap for correlation studies should be around
3.5.Comment: 4 pages, 3 figure
Experimental demonstration of a quantum router
The router is a key element for a network. We describe a scheme to realize
genuine quantum routing of single-photon pulses based on cascading of
conditional quantum gates in a Mach-Zehnder interferometer and report a
proof-of-principle experiment for its demonstration using linear optics quantum
gates. The polarization of the control photon routes in a coherent way the path
of the signal photon while preserving the qubit state of the signal photon
represented by its polarization. We demonstrate quantum nature of this router
by showing entanglement generated between the initially unentangled control and
signal photons, and confirm that the qubit state of the signal photon is well
preserved by the router through quantum process tomography
Modelling and simulation of a biometric identity-based cryptography
Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols
A Coupled AKNS-Kaup-Newell Soliton Hierarchy
A coupled AKNS-Kaup-Newell hierarchy of systems of soliton equations is
proposed in terms of hereditary symmetry operators resulted from Hamiltonian
pairs. Zero curvature representations and tri-Hamiltonian structures are
established for all coupled AKNS-Kaup-Newell systems in the hierarchy.
Therefore all systems have infinitely many commuting symmetries and
conservation laws. Two reductions of the systems lead to the AKNS hierarchy and
the Kaup-Newell hierarchy, and thus those two soliton hierarchies also possess
tri-Hamiltonian structures.Comment: 15 pages, late
- …
