109,539 research outputs found
Pulsar slow glitches in a solid quark star model
A series of five unusual slow glitches of the radio pulsar B1822-09 (PSR
J1825-0935) were observed over the 1995-2005 interval. This phenomenon is
understood in a solid quark star model, where the reasonable parameters for
slow glitches are presented in the paper. It is proposed that, because of
increasing shear stress as a pulsar spins down, a slow glitch may occur,
beginning with a collapse of a superficial layer of the quark star. This layer
of material turns equivalently to viscous fluid at first, the viscosity of
which helps deplete the energy released from both the accumulated elastic
energy and the gravitation potential. This performs then a process of slow
glitch. Numerical calculations show that the observed slow glitches could be
reproduced if the effective coefficient of viscosity is ~10^2 cm^{2}/s and the
initial velocity of the superficial layer is order of 10^{-10} cm/s in the
coordinate rotating frame of the star.Comment: 5 pages, 5 figures, accepted for publication in MNRAS (Main Journal
Stocking, Enhancement, and Mariculture of Penaeus orientalis and Other Species in Shanghai and Zhejiang Provinces, China
China's marine aquaculture landings provide only 18% of its combined freshwater and amrine capture and culture landings, at a per-capita consumption of only 3.2 kg/yr out of a total of 18.1 kg/yr. We described development and some of the results of long-term mariculture and stocking/enhancement projects that have been underway for up to 20 years in the Hangzhou Bay area. Penaeus orientalis (also referred to as P. chinensis) stocking provided up to 400 t/yr, at a total cost-benefit ratio of up to 8 Yuan of landed shrimp per Yuan invested in shrimp stocking. Over 40 t of Penaeus orientalis were produced commercially in 1993, with proceeds being used to fund mariculture and fisheries research. Large scale edible jellyfish restocking is also underway, while semicommercial culture of abalone, Haliotis diversicolor, has been successful. Technical problems limitig mariculture have been solved successfully for some species
An integrated approach to global synchronization and state estimation for nonlinear singularly perturbed complex networks
This paper aims to establish a unified framework to handle both the exponential synchronization and state estimation problems for a class of nonlinear singularly perturbed complex networks (SPCNs). Each node in the SPCN comprises both 'slow' and 'fast' dynamics that reflects the singular perturbation behavior. General sector-like nonlinear function is employed to describe the nonlinearities existing in the network. All nodes in the SPCN have the same structures and properties. By utilizing a novel Lyapunov functional and the Kronecker product, it is shown that the addressed SPCN is synchronized if certain matrix inequalities are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that dynamics (both slow and fast) of the estimation error is guaranteed to be globally asymptotically stable. Again, a matrix inequality approach is developed for the state estimation problem. Two numerical examples are presented to verify the effectiveness and merits of the proposed synchronization scheme and state estimation formulation. It is worth mentioning that our main results are still valid even if the slow subsystems within the network are unstable
Delay-dependent robust stability of stochastic delay systems with Markovian switching
In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method
Long-term optical and radio variability of BL Lacertae
Well-sampled optical and radio light curves of BL Lacertae in B, V, R, I
bands and 4.8, 8.0, 14.5 GHz from 1968 to 2014 were presented in this paper. A
possible yr period in optical bands and a yr
period in radio bands were detected based on discrete correlation function,
structure function as well as Jurkevich method. Correlations among different
bands were also analyzed and no reliable time delay was found between optical
bands. Very weak correlations were detected between V band and radio bands.
However, in radio bands the variation at low frequency lagged that at high
frequency obviously. The spectrum of BL Lacertae turned mildly bluer when the
object turned brighter, and stronger bluer-when-brighter trends were found for
short flares. A scenario including a precessing helical jet and periodic shocks
was put forward to interpret the variation characteristics of BL Lacertae.Comment: 7 pages, 11 figures, submitte
- …
