227,416 research outputs found

    The scaling feature of the magnetic field induced Kondo-peak splittings

    Full text link
    By using the full density matrix approach to spectral functions within the numerical renormalization group method, we present a detailed study of the magnetic field induced splittings in the spin-resolved and the total spectral densities of a Kondo correlated quantum dot described by the single level Anderson impurity model. The universal scaling of the splittings with magnetic field is examined by varying the Kondo scale either by a change of local level position at a fixed tunnel coupling or by a change of the tunnel coupling at a fixed level position. We find that the Kondo-peak splitting Δ/TK\Delta/T_K in the spin-resolved spectral function always scales perfectly for magnetic fields B<8TKB<8T_K in either of the two TKT_K-adjusted paths. Scaling is destroyed for fields B>10TKB>10T_K. On the other hand, the Kondo peak splitting δ/TK\delta/T_K in the total spectral function does slightly deviate from the conventional scaling theory in whole magnetic field window along the coupling-varying path. Furthermore, we show the scaling analysis suitable for all field windows within the Kondo regime and two specific fitting scaling curves are given from which certain detailed features at low field are derived. In addition, the scaling dimensionless quantity Δ/2B\Delta/2B and δ/2B\delta/2B are also studied and they can reach and exceed 1 in the large magnetic field region, in agreement with a recent experiment [T.M. Liu, et al., Phys. Rev. Lett. 103, 026803 (2009)].Comment: 8 pages, 5 figure

    Orbital and Pauli limiting effects in heavily doped Ba1x_{1-x}Kx_xFe2_2As2_2

    Full text link
    We investigated the thermodynamic properties of the Fe-based lightly disordered superconductor Ba0.05_{0.05}K0.95_{0.95}Fe2_2As2_2 in external magnetic field H applied along the FeAs layers (H//ab planes). The superconducting (SC) transition temperature for this doping level is Tc_c = 6.6 K. Our analysis of the specific heat C(T,H) measured for T < Tc_c implies a sign change of the superconducting order parameter across different Fermi pockets. We provide experimental evidence for the three components superconducting order parameter. We find that all three components have values which are comparable with the previously reported ones for the stochiometric compound KFe2_2As2_2. Our data for C(T,H) and resistivity rho(T,H) can be interpreted in favor of the dominant orbital contribution to the pair-breaking mechanism at low fields, while Pauli limiting effect dominates at high fields, giving rise to a gapless superconducting state with only the leading non-zero gap.Comment: 7 pages, 5 figure
    corecore