1,639 research outputs found
The 25 October 2010 Mentawai tsunami earthquake (M_w 7.8) and the tsunami hazard presented by shallow megathrust ruptures
The 25 October 2010 Mentawai, Indonesia earthquake (M_w 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off-shore of Sumatra, generating 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite-fault source rupture characteristics indicate ∼90 s rupture duration with a low rupture velocity of ∼1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∼100 km long source region. The seismic moment-scaled energy release is 1.4 × 10^(−6), lower than 2.4 × 10^(−6) found for the 17 July 2006 Java tsunami earthquake (M_w 7.8). The Mentawai event ruptured up-dip of the slip region of the 12 September 2007 Kepulauan earthquake (M_w 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up-dip of great underthrusting events in Indonesia and elsewhere
Hydrogen and Methane Production from Condensed Molasses Fermentation Soluble by a Two-stage Anaerobic Process
Spontaneous Interlayer Charge Transfer near the Magnetic Quantum Limit
Experiments reveal that a confined electron system with two equally-populated
layers at zero magnetic field can spontaneously break this symmetry through an
interlayer charge transfer near the magnetic quantum limit. New fractional
quantum Hall states at unusual total filling factors such as \nu = 11/15 (= 1/3
+ 2/5) stabilize as signatures that the system deforms itself, at substantial
electrostatic energy cost, in order to gain crucial correlation energy by
"locking in" separate incompressible liquid phases at unequal fillings in the
two layers (e.g., layered 1/3 and 2/5 states in the case of \nu = 11/15).Comment: 4 pages, 4 figures (1 color) included in text. Related papers at
http://www.ee.princeton.edu/~hari/papers.htm
Quantum universal detectors
We address the problem of estimating the expectation value of an
arbitrary operator O via a universal measuring apparatus that is independent of
O, and for which the expectation values for different operators are obtained by
changing only the data-processing. The ``universal detector'' performs a joint
measurement on the system and on a suitably prepared ancilla. We characterize
such universal detectors, and show how they can be obtained either via Bell
measurements or via local measurements and classical communication between
system and ancilla.Comment: 4 pages, no figure
In-Vivo Evaluation of Microultrasound and Thermometric Capsule Endoscopes
Clinical endoscopy and colonoscopy are commonly used to investigate and diagnose disorders in the upper gastrointestinal tract and colon respectively. However, examination of the anatomically remote small bowel with conventional endoscopy is challenging. This and advances in miniaturization led to the development of video capsule endoscopy (VCE) to allow small bowel examination in a non-invasive manner. Available since 2001, current capsule endoscopes are limited to viewing the mucosal surface only due to their reliance on optical imaging. To overcome this limitation with submucosal imaging, work is under way to implement microultrasound (μUS) imaging in the same form as VCE devices. This paper describes two prototype capsules, termed Sonocap and Thermocap, which were developed respectively to assess the quality of μUS imaging and the maximum power consumption that can be tolerated for such a system. The capsules were tested in vivo in the oesophagus and small bowel of porcine models. Results are presented in the form of μUS B-scans and safe temperature readings observed up to 100 mW in both biological regions. These results demonstrate that acoustic coupling and μUS imaging can be achieved in vivo in the lumen of the bowel and the maximum power consumption that is possible for miniature μUS systems
Ultrasound capsule endoscopy:sounding out the future
Video capsule endoscopy (VCE) has been of immense benefit in the diagnosis and management of gastrointestinal (GI) disorders since its introduction in 2001. However, it suffers from a number of well recognized deficiencies. Amongst these is the limited capability of white light imaging, which is restricted to analysis of the mucosal surface. Current capsule endoscopes are dependent on visual manifestation of disease and limited in regards to transmural imaging and detection of deeper pathology. Ultrasound capsule endoscopy (USCE) has the potential to overcome surface only imaging and provide transmural scans of the GI tract. The integration of high frequency microultrasound (µUS) into capsule endoscopy would allow high resolution transmural images and provide a means of both qualitative and quantitative assessment of the bowel wall. Quantitative ultrasound (QUS) can provide data in an objective and measurable manner, potentially reducing lengthy interpretation times by incorporation into an automated diagnostic process. The research described here is focused on the development of USCE and other complementary diagnostic and therapeutic modalities. Presently investigations have entered a preclinical phase with laboratory investigations running concurrently
New Debris Disks Around Nearby Main Sequence Stars: Impact on The Direct Detection of Planets
Using the MIPS instrument on the Spitzer telescope, we have searched for
infrared excesses around a sample of 82 stars, mostly F, G, and K main-sequence
field stars, along with a small number of nearby M stars. These stars were
selected for their suitability for future observations by a variety of
planet-finding techniques. These observations provide information on the
asteroidal and cometary material orbiting these stars - data that can be
correlated with any planets that may eventually be found. We have found
significant excess 70um emission toward 12 stars. Combined with an earlier
study, we find an overall 70um excess detection rate of % for mature
cool stars. Unlike the trend for planets to be found preferentially toward
stars with high metallicity, the incidence of debris disks is uncorrelated with
metallicity. By newly identifying 4 of these stars as having weak 24um excesses
(fluxes 10% above the stellar photosphere), we confirm a trend found in
earlier studies wherein a weak 24um excess is associated with a strong 70um
excess. Interestingly, we find no evidence for debris disks around 23 stars
cooler than K1, a result that is bolstered by a lack of excess around any of
the 38 K1-M6 stars in 2 companion surveys. One motivation for this study is the
fact that strong zodiacal emission can make it hard or impossible to detect
planets directly with future observatories like the {\it Terrestrial Planet
Finder (TPF)}. The observations reported here exclude a few stars with very
high levels of emission, 1,000 times the emission of our zodiacal cloud,
from direct planet searches. For the remainder of the sample, we set relatively
high limits on dust emission from asteroid belt counterparts
Could One Find Petroleum Using Neutrino Oscillations in Matter?
In neutrino physics, it is now widely believed that neutrino oscillations are
influenced by the presence of matter, modifying the energy spectrum produced by
a neutrino beam traversing the Earth. Here, we will discuss the reverse
problem, i.e. what could be learned about the Earth's interior from a single
neutrino baseline energy spectrum, especially about the Earth's mantle. We will
use a statistical analysis with a low-energy neutrino beam under very
optimistic assumptions. At the end, we will note that it is hard to find
petroleum with such a method, though it is not too far away from technical
feasibility.Comment: 6 pages, 4 figures, EPL LaTeX. Final version to be published in
Europhys. Let
The 2009 Samoa–Tonga great earthquake triggered doublet
Great earthquakes (having seismic magnitudes of at least 8) usually involve abrupt sliding of rock masses at a boundary between tectonic plates. Such interplate ruptures produce dynamic and static stress changes that can activate nearby intraplate aftershocks, as is commonly observed in the trench-slope region seaward of a great subduction zone thrust event1. The earthquake sequence addressed here involves a rare instance in which a great trench-slope intraplate earthquake triggered extensive interplate faulting, reversing the typical pattern and broadly expanding the seismic and tsunami hazard. On 29 September 2009, within two minutes of the initiation of a normal faulting event with moment magnitude 8.1 in the outer trench-slope at the northern end of the Tonga subduction zone, two major interplate underthrusting subevents (both with moment magnitude 7.8), with total moment equal to a second great earthquake of moment magnitude 8.0, ruptured the nearby subduction zone megathrust. The collective faulting produced tsunami waves with localized regions of about 12 metres run-up that claimed 192 lives in Samoa, American Samoa and Tonga. Overlap of the seismic signals obscured the fact that distinct faults separated by more than 50 km had ruptured with different geometries, with the triggered thrust faulting only being revealed by detailed seismic wave analyses. Extensive interplate and intraplate aftershock activity was activated over a large region of the northern Tonga subduction zone
- …
