8,226 research outputs found

    Protostellar Collapse with Various Metallicities

    Get PDF
    The thermal and chemical evolution of gravitationally collapsing protostellar clouds is investigated, focusing attention on their dependence on metallicity. Calculations are carried out for a range of metallicities spanning the local interstellar value to zero. During the time when clouds are transparent to continuous radiation, the temperatures are higher for those with lower metallicity, reflecting lower radiative ability. However, once the clouds become opaque, in the course of the adiabatic contraction of the transient cores, their evolutionary trajectories in the density-temperature plane converge to a unique curve that is determined by only physical constants. The trajectories coincide with each other thereafter. Consequently, the size of the stellar core at the formation is the same regardless of the gas composition of the parent cloud.Comment: 30 pages. The Astrophysical Journal, 533, in pres

    Numerical solution of fredholm fractional integro-differential equation with right-sided caputo’s derivative using bernoulli polynomials operational matrix of fractional derivative

    Get PDF
    In this article, fractional integro-differential equation (FIDE) of Fredholm type involving right-sided Caputo’s fractional derivative with multi-fractional orders is considered. Analytical expressions of the expansion coefficient ck by Bernoulli polynomials approximation have been derived for both approximation of single- and double-variable function. The Bernoulli polynomials operational matrix of right-sided Caputo’s fractional derivative Pα −;B is derived. By approximating each term in the Fredholm FIDE with right-sided Caputo’s fractional derivative in terms of Bernoulli polynomials basis, the equation is reduced to a system of linear algebraic equation of the unknown coefficients ck. Solving for the coefficients produces the approximate solution for this special type of FIDE

    Models of Little Higgs and Electroweak Precision Tests

    Full text link
    The little Higgs idea is an alternative to supersymmetry as a solution to the gauge hierarchy problem. In this note, I review various little Higgs models and their phenomenology with emphases on the precision electroweak constraints in these models.Comment: 16 pages; 4 figures; review submitted to Modern Physics Letter

    On electroweak baryogenesis in the littlest Higgs model with T parity

    Full text link
    We study electroweak baryogenesis within the framework of the littlest Higgs model with T parity. This model has shown characteristics of a strong first-order electroweak phase transition, which is conducive to baryogenesis in the early Universe. In the T parity symmetric theory, there are two gauge sectors, viz., the T-even and the T-odd ones. We observe that the effect of the T-parity symmetric interactions between the T-odd and the T-even gauge bosons on gauge-higgs energy functional is quite small, so that these two sectors can be taken to be independent. The T-even gauge bosons behave like the Standard Model gauge bosons, whereas the T-odd ones are instrumental in stabilizing the Higgs mass. For the T-odd gauge bosons in the symmetric and asymmetric phases and for the T-even gauge bosons in the asymmetric phase, we obtain, using the formalism of Arnold and McLerran, very small values of the ratio, (Baryon number violation rate/Universe expansion rate). We observe that this result, in conjunction with the scenario of inverse phase transition in the present work and the value of the ratio obtained from the lattice result of sphaleron transition rate in the symmetric phase, can provide us with a plausible baryogenesis scenario.Comment: 13 pages, 2 figures, published version, references modifie

    Color mixing in high-energy hadron collisions

    Get PDF
    The color mixing of mesons propagating in a nucleus is studied with the help of a color-octet Pomeron partner present in the two-gluon model of the Pomeron. For a simple model with four meson-nucleon channels, color mixings are found to be absent for pointlike mesons and very small for small mesons. These results seem to validate the absorption model with two independent color components used in recent analyses of the nuclear absorption of J/ψJ/\psi mesons produced in nuclear reactions.Comment: 3 journal-style page

    Multiple Reggeon Exchange from Summing QCD Feynman Diagrams

    Full text link
    Multiple reggeon exchange supplies subleading logs that may be used to restore unitarity to the Low-Nussinov Pomeron, provided it can be proven that the sum of Feynman diagrams to all orders gives rise to such multiple regge exchanges. This question cannot be easily tackled in the usual way except for very low-order diagrams, on account of delicate cancellations present in the sum which necessitate individual Feynman diagrams to be computed to subleading orders. Moreover, it is not clear that sums of high-order Feynman diagrams with complicated criss-crossing of lines can lead to factorization implied by the multi-regge scenario. Both of these difficulties can be overcome by using the recently developed nonabelian cut diagrams. We are then able to show that the sum of ss-channel-ladder diagrams to all orders does lead to such multiple reggeon exchanges.Comment: uu-encoded latex file with 11 postscript figures (20 pages

    Gate-controlled Guiding of Electrons in Graphene

    Full text link
    Ballistic semiconductor structures have allowed the realization of optics-like phenomena in electronics, including magnetic focusing and lensing. An extension that appears unique to graphene is to use both n and p carrier types to create electronic analogs of optical devices having both positive and negative indices of refraction. Here, we use gate-controlled density with both p and n carrier types to demonstrate the analog of the fiber-optic guiding in graphene. Two basic effects are investigated: (1) bipolar p-n junction guiding, based on the principle of angle-selective transmission though the graphene p-n interface, and (2) unipolar fiber-optic guiding, using total internal reflection controlled by carrier density. Modulation of guiding efficiency through gating is demonstrated and compared to numerical simulations, which indicates that interface roughness limits guiding performance, with few-nanometer effective roughness extracted. The development of p-n and fiber-optic guiding in graphene may lead to electrically reconfigurable wiring in high-mobility devices.Comment: supplementary materal at http://marcuslab.harvard.edu/papers/OG_SI.pd

    Theoretical and Experimental Studies of Schottky Diodes That Use Aligned Arrays of Single Walled Carbon Nanotubes

    Get PDF
    We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of m-SWNT shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to ten micrometer.Comment: Nano Research, 2010, accepte

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE
    corecore