328,994 research outputs found
Interacting Individuals Leading to Zipf's Law
We present a general approach to explain the Zipf's law of city distribution.
If the simplest interaction (pairwise) is assumed, individuals tend to form
cities in agreement with the well-known statisticsComment: 4 pages 2 figure
Tuning electronic structure of graphene via tailoring structure: theoretical study
Electronic structures of graphene sheet with different defective patterns are
investigated, based on the first principles calculations. We find that
defective patterns can tune the electronic structures of the graphene
significantly. Triangle patterns give rise to strongly localized states near
the Fermi level, and hexagonal patterns open up band gaps in the systems. In
addition, rectangular patterns, which feature networks of graphene nanoribbons
with either zigzag or armchair edges, exhibit semiconducting behaviors, where
the band gap has an evident dependence on the width of the nanoribbons. For the
networks of the graphene nanoribbons, some special channels for electronic
transport are predicted.Comment: 5 figures, 6 page
Models of Financial Markets with Extensive Participation Incentives
We consider models of financial markets in which all parties involved find
incentives to participate. Strategies are evaluated directly by their virtual
wealths. By tuning the price sensitivity and market impact, a phase diagram
with several attractor behaviors resembling those of real markets emerge,
reflecting the roles played by the arbitrageurs and trendsetters, and including
a phase with irregular price trends and positive sums. The positive-sumness of
the players' wealths provides participation incentives for them. Evolution and
the bid-ask spread provide mechanisms for the gain in wealth of both the
players and market-makers. New players survive in the market if the
evolutionary rate is sufficiently slow. We test the applicability of the model
on real Hang Seng Index data over 20 years. Comparisons with other models show
that our model has a superior average performance when applied to real
financial data.Comment: 17 pages, 16 figure
The heavy-element abundances of AGB stars and the angular momentum conservation model of wind accretion for barium stars
Adpoting new s-process nucleosynthesis scenario and branch s-process path, we
calculate the heavy-element abundances and C/O ratio of solar metallicity
3M_sun TP-AGB stars. The evolutionary sequence from M to S to C stars of AGB
stars is explained naturally by the calculated results. Then combining the
angular momentum conservation model of wind accretion with the heavy-element
abundances on the surface of TP-AGB stars, we calculate the heavy-element
overabundances of barium stars via successive pulsed accreting and mixing. Our
results support that the barium stars with longer orbital period, P>1600 days,
form through wind accretion scenario.Comment: 14 pages, LaTex, 17 PS figures included, accepted for publication in
A &
Cosmic age, Statefinder and diagnostics in the decaying vacuum cosmology
As an extension of CDM, the decaying vacuum model (DV) describes the
dark energy as a varying vacuum whose energy density decays linearly with the
Hubble parameter in the late-times, , and
produces the matter component. We examine the high- cosmic age problem in
the DV model, and compare it with CDM and the Yang-Mills condensate
(YMC) dark energy model. Without employing a dynamical scalar field for dark
energy, these three models share a similar behavior of late-time evolution. It
is found that the DV model, like YMC, can accommodate the high- quasar APM
08279+5255, thus greatly alleviates the high- cosmic age problem. We also
calculate the Statefinder and the {\it Om} diagnostics in the model. It
is found that the evolutionary trajectories of and in the DV
model are similar to those in the kinessence model, but are distinguished from
those in CDM and YMC. The in DV has a negative slope and
its height depends on the matter fraction, while YMC has a rather flat , whose magnitude depends sensitively on the coupling.Comment: 12 pages, 4 figures, with some correction
- …
