137 research outputs found

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Isolation and characterisation of human gingival margin-derived STRO-1/MACS+ and MACS− cell populations

    Get PDF
    Recently, gingival margin-derived stem/progenitor cells isolated via STRO-1/magnetic activated cell sorting (MACS) showed remarkable periodontal regenerative potential in vivo. As a second-stage investigation, the present study's aim was to perform in vitro characterisation and comparison of the stem/progenitor cell characteristics of sorted STRO-1-positive (MACS+) and STRO-1-negative (MACS−) cell populations from the human free gingival margin. Cells were isolated from the free gingiva using a minimally invasive technique and were magnetically sorted using anti-STRO-1 antibodies. Subsequently, the MACS+ and MACS− cell fractions were characterized by flow cytometry for expression of CD14, CD34, CD45, CD73, CD90, CD105, CD146/MUC18 and STRO-1. Colony-forming unit (CFU) and multilineage differentiation potential were assayed for both cell fractions. Mineralisation marker expression was examined using real-time polymerase chain reaction (PCR). MACS+ and MACS− cell fractions showed plastic adherence. MACS+ cells, in contrast to MACS− cells, showed all of the predefined mesenchymal stem/progenitor cell characteristics and a significantly higher number of CFUs (P<0.01). More than 95% of MACS+ cells expressed CD105, CD90 and CD73; lacked the haematopoietic markers CD45, CD34 and CD14, and expressed STRO-1 and CD146/MUC18. MACS− cells showed a different surface marker expression profile, with almost no expression of CD14 or STRO-1, and more than 95% of these cells expressed CD73, CD90 and CD146/MUC18, as well as the haematopoietic markers CD34 and CD45 and CD105. MACS+ cells could be differentiated along osteoblastic, adipocytic and chondroblastic lineages. In contrast, MACS− cells demonstrated slight osteogenic potential. Unstimulated MACS+ cells showed significantly higher expression of collagen I (P<0.05) and collagen III (P<0.01), whereas MACS− cells demonstrated higher expression of osteonectin (P<0.05; Mann–Whitney). The present study is the first to compare gingival MACS+ and MACS− cell populations demonstrating that MACS+ cells, in contrast to MACS− cells, harbour stem/progenitor cell characteristics. This study also validates the effectiveness of the STRO-1/MACS+ technique for the isolation of gingival stem/progenitor cells. Human free gingival margin-derived STRO-1/MACS+ cells are a unique renewable source of multipotent stem/progenitor cells

    The muon system of the Daya Bay Reactor antineutrino experiment

    Get PDF
    postprin

    Search for a Light Sterile Neutrino at Daya Bay

    Get PDF
    published_or_final_versio

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Independent measure of the neutrino mixing angle θ13 via neutron capture on hydrogen at Daya Bay

    Get PDF
    published_or_final_versio

    Public knowledge in Hong Kong towards cardiopulmonary resuscitation

    Get PDF
    published_or_final_versio

    Frailty and Its Impact on Health-Related Quality of Life: A Cross-Sectional Study on Elder Community-Dwelling Preventive Health Service Users

    Get PDF
    BACKGROUND: The purpose of this study was to identify the incidence of frailty and to investigate the relationship between frailty status and health-related quality of life (HRQoL) in the community-dwelling elderly population who utilize preventive health services. METHODS: People aged 65 years and older who visited a medical center in Taipei City from March to August in 2011 for an annual routine check-up provided by the National Health Insurance were eligible. A total of 374 eligible elderly adults without cognitive impairment had a mean age of 74.6±6.3 years. Frailty status was determined according to the Fried frailty criteria. HRQoL was measured with Short Form-36 (SF-36). Multiple regression analyses examined the relationship between frailty status and the two summary scales of SF-36. Models were adjusted for the participants' sociodemographic and health status. RESULTS: After adjusting for sociodemographic and health-related covariables, frailty was found to be more significantly associated (p<0.001) with lower scores on both physical and mental health-related quality of life summary scales compared with robustness. For the frailty phenotypes, slowness represented the major contributing factor in the physical component scale of SF-36, and exhaustion was the primary contributing factor in the mental component scale. CONCLUSION: The status of frailty is closely associated with HRQoL in elderly Taiwanese preventive health service users. The impacts of frailty phenotypes on physical and mental aspects of HRQoL differ

    Gene-Gene and Gene-Environmental Interactions of Childhood Asthma: A Multifactor Dimension Reduction Approach

    Get PDF
    Background: The importance of gene-gene and gene-environment interactions on asthma is well documented in literature, but a systematic analysis on the interaction between various genetic and environmental factors is still lacking. Methodology/Principal Findings: We conducted a population-based, case-control study comprised of seventh-grade children from 14 Taiwanese communities. A total of 235 asthmatic cases and 1,310 non-asthmatic controls were selected for DNA collection and genotyping. We examined the gene-gene and gene-environment interactions between 17 singlenucleotide polymorphisms in antioxidative, inflammatory and obesity-related genes, and childhood asthma. Environmental exposures and disease status were obtained from parental questionnaires. The model-free and non-parametrical multifactor dimensionality reduction (MDR) method was used for the analysis. A three-way gene-gene interaction was elucidated between the gene coding glutathione S-transferase P (GSTP1), the gene coding interleukin-4 receptor alpha chain (IL4Ra) and the gene coding insulin induced gene 2 (INSIG2) on the risk of lifetime asthma. The testing-balanced accuracy on asthma was 57.83 % with a cross-validation consistency of 10 out of 10. The interaction of preterm birth and indoor dampness had the highest training-balanced accuracy at 59.09%. Indoor dampness also interacted with many genes, including IL13, beta-2 adrenergic receptor (ADRB2), signal transducer and activator of transcription 6 (STAT6). We also used likelihood ratio tests for interaction and chi-square tests to validate our results and all tests showed statistical significance
    corecore