338,351 research outputs found
Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios
In the widely-studied two-color laser scheme for terahertz (THz) radiation
from a gas, the frequency ratio of the two lasers is usually fixed at
1:2. We investigate THz generation with uncommon frequency
ratios. Our experiments show, for the first time, efficient THz generation with
new ratios of 1:4 and 2:3. We observe that the THz
polarization can be adjusted by rotating the longer-wavelength laser
polarization and the polarization adjustment becomes inefficient by rotating
the other laser polarization; the THz energy shows similar scaling laws with
different frequency ratios. These observations are inconsistent with multi-wave
mixing theory, but support the gas-ionization model. This study pushes the
development of the two-color scheme and provides a new dimension to explore the
long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure
A Conservative Discontinuous Galerkin Scheme With O(N-2) Operations In Computing Boltzmann Collision Weight Matrix
In the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form in linear algebra setting. We employ the property of >shifting symmetry> in the weight matrix to reduce the computing complexity from theoretical O(N-3) down to O(N-2), with N the total number of freedom for d-dimensional velocity space. In addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole computing process is well parallelized using hybrid OpetiMP and MPI. The current work only considers integrable angular cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.Mathematic
Cosmic age, Statefinder and diagnostics in the decaying vacuum cosmology
As an extension of CDM, the decaying vacuum model (DV) describes the
dark energy as a varying vacuum whose energy density decays linearly with the
Hubble parameter in the late-times, , and
produces the matter component. We examine the high- cosmic age problem in
the DV model, and compare it with CDM and the Yang-Mills condensate
(YMC) dark energy model. Without employing a dynamical scalar field for dark
energy, these three models share a similar behavior of late-time evolution. It
is found that the DV model, like YMC, can accommodate the high- quasar APM
08279+5255, thus greatly alleviates the high- cosmic age problem. We also
calculate the Statefinder and the {\it Om} diagnostics in the model. It
is found that the evolutionary trajectories of and in the DV
model are similar to those in the kinessence model, but are distinguished from
those in CDM and YMC. The in DV has a negative slope and
its height depends on the matter fraction, while YMC has a rather flat , whose magnitude depends sensitively on the coupling.Comment: 12 pages, 4 figures, with some correction
A finite-strain hyperviscoplastic model and undrained triaxial tests of peat
This paper presents a finite-strain hyperviscoplastic constitutive model
within a thermodynamically consistent framework for peat which was categorised
as a material with both rate-dependent and thermodynamic equilibrium hysteresis
based on the data reported in the literature. The model was implemented
numerically using implicit time integration and verified against analytical
solutions under simplified conditions. Experimental studies on the undrained
relaxation and loading-unloading-reloading behaviour of an undisturbed fibrous
peat were carried out to define the thermodynamic equilibrium state during
deviatoric loading as a prerequisite for further modelling, to fit particularly
those model parameters related to solid matrix properties, and to validate the
proposed model under undrained conditions. This validation performed by
comparison to experimental results showed that the hyperviscoplastic model
could simulate undrained triaxial compression tests carried out at five
different strain rates with loading/unloading relaxation steps.Comment: 30 pages, 16 figures, 4 tables. This is a pre-peer reviewed version
of manuscript submitted to the International Journal of Numerical and
Analytical Methods in Geomechanic
Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance
In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures
Nearby Low-Mass Hypervelocity Stars
Hypervelocity stars are those that have speeds exceeding the escape speed and
are hence unbound from the Milky Way. We investigate a sample of low-mass
hypervelocity candidates obtained using data from the high-precision SDSS
Stripe 82 catalogue, which we have combined with spectroscopy from the 200-inch
Hale Telescope at Palomar Observatory. We find four good candidates, but
without metallicities it is difficult to pin-down their distances and therefore
total velocities. Our best candidate has a significant likelihood that it is
escaping the Milky Way for a wide-range of metallicities.Comment: 5 pages; Contribution to proceedings for "The Milky Way Unravelled by
Gaia" conference, Barcelona, Dec 201
Surface States of Topological Insulators
We develop an effective bulk model with a topological boundary condition to
study the surface states of topological insulators. We find that the Dirac
point energy, the band curvature and the spin texture of surface states are
crystal face-dependent. For a given face on a sphere, the Dirac point energy is
determined by the bulk physics that breaks p-h symmetry in the surface normal
direction and is tunable by surface potentials that preserve T symmetry.
Constant energy contours near the Dirac point are ellipses with spin textures
that are helical on the S/N pole, collapsed to one dimension on any side face,
and tilted out-of-plane otherwise. Our findings identify a route to engineering
the Dirac point physics on the surfaces of real materials.Comment: 4.1 pages, 2 figures and 1 tabl
- …
