338,351 research outputs found

    Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    Get PDF
    In the widely-studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=\omega_2/\omega_1=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=\omega_2/\omega_1=1:4 and 2:3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multi-wave mixing theory, but support the gas-ionization model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.Comment: 6 pages, 3 figure

    A Conservative Discontinuous Galerkin Scheme With O(N-2) Operations In Computing Boltzmann Collision Weight Matrix

    Get PDF
    In the present work, we propose a deterministic numerical solver for the homogeneous Boltzmann equation based on Discontinuous Galerkin (DG) methods. The weak form of the collision operator is approximated by a quadratic form in linear algebra setting. We employ the property of >shifting symmetry> in the weight matrix to reduce the computing complexity from theoretical O(N-3) down to O(N-2), with N the total number of freedom for d-dimensional velocity space. In addition, the sparsity is also explored to further reduce the storage complexity. To apply lower order polynomials and resolve loss of conserved quantities, we invoke the conservation routine at every time step to enforce the conservation of desired moments (mass, momentum and/or energy), with only linear complexity. Due to the locality of the DG schemes, the whole computing process is well parallelized using hybrid OpetiMP and MPI. The current work only considers integrable angular cross-sections under elastic and/or inelastic interaction laws. Numerical results on 2-D and 3-D problems are shown.Mathematic

    Cosmic age, Statefinder and OmOm diagnostics in the decaying vacuum cosmology

    Full text link
    As an extension of Λ\LambdaCDM, the decaying vacuum model (DV) describes the dark energy as a varying vacuum whose energy density decays linearly with the Hubble parameter in the late-times, ρΛ(t)H(t)\rho_\Lambda(t) \propto H(t), and produces the matter component. We examine the high-zz cosmic age problem in the DV model, and compare it with Λ\LambdaCDM and the Yang-Mills condensate (YMC) dark energy model. Without employing a dynamical scalar field for dark energy, these three models share a similar behavior of late-time evolution. It is found that the DV model, like YMC, can accommodate the high-zz quasar APM 08279+5255, thus greatly alleviates the high-zz cosmic age problem. We also calculate the Statefinder (r,s)(r,s) and the {\it Om} diagnostics in the model. It is found that the evolutionary trajectories of r(z)r(z) and s(z)s(z) in the DV model are similar to those in the kinessence model, but are distinguished from those in Λ\LambdaCDM and YMC. The Om(z){\it Om}(z) in DV has a negative slope and its height depends on the matter fraction, while YMC has a rather flat Om(z){\it Om}(z), whose magnitude depends sensitively on the coupling.Comment: 12 pages, 4 figures, with some correction

    A finite-strain hyperviscoplastic model and undrained triaxial tests of peat

    Full text link
    This paper presents a finite-strain hyperviscoplastic constitutive model within a thermodynamically consistent framework for peat which was categorised as a material with both rate-dependent and thermodynamic equilibrium hysteresis based on the data reported in the literature. The model was implemented numerically using implicit time integration and verified against analytical solutions under simplified conditions. Experimental studies on the undrained relaxation and loading-unloading-reloading behaviour of an undisturbed fibrous peat were carried out to define the thermodynamic equilibrium state during deviatoric loading as a prerequisite for further modelling, to fit particularly those model parameters related to solid matrix properties, and to validate the proposed model under undrained conditions. This validation performed by comparison to experimental results showed that the hyperviscoplastic model could simulate undrained triaxial compression tests carried out at five different strain rates with loading/unloading relaxation steps.Comment: 30 pages, 16 figures, 4 tables. This is a pre-peer reviewed version of manuscript submitted to the International Journal of Numerical and Analytical Methods in Geomechanic

    Comparative study of Steel-FRP, FRP and steel reinforced coral concrete beams in their flexural performance

    Get PDF
    In this paper, a comparative study of Carbon Fiber Reinforced Polymer (CFRP) Bar and Steel-Carbon Fiber Composite Bar (SCFCB) reinforced coral concrete beams are made through a series experimental tests and theoretical analysis. The flexural capacity, crack development and failure modes of CFRP and SCFCB reinforced coral concrete were investigated in detail. They are also compared to ordinary steel reinforced coral concrete beams. The results show that under the same condition of reinforcement ratio, the SCFCB reinforced beam exhibits better performance than those of the CFRP reinforced beams, and its stiffness is slightly lower than that of the steel reinforced beam. Under the same load condition, the crack width of the SCFCB beam is between the steel reinforced beam and the CFRP bar reinforced beam. Before the steel core yields, the crack growth rate of SCFCB beam is similar to the steel reinforced beam. SCFCB has a higher strength utilization rate, about 70% -85% of its ultimate strength. The current design guidance was also examined based on the test results. It was found that the existing design specifications for FRP reinforced normal concrete is not suitable for SCFCB reinforced coral concrete structures

    Nearby Low-Mass Hypervelocity Stars

    Full text link
    Hypervelocity stars are those that have speeds exceeding the escape speed and are hence unbound from the Milky Way. We investigate a sample of low-mass hypervelocity candidates obtained using data from the high-precision SDSS Stripe 82 catalogue, which we have combined with spectroscopy from the 200-inch Hale Telescope at Palomar Observatory. We find four good candidates, but without metallicities it is difficult to pin-down their distances and therefore total velocities. Our best candidate has a significant likelihood that it is escaping the Milky Way for a wide-range of metallicities.Comment: 5 pages; Contribution to proceedings for "The Milky Way Unravelled by Gaia" conference, Barcelona, Dec 201

    Surface States of Topological Insulators

    Get PDF
    We develop an effective bulk model with a topological boundary condition to study the surface states of topological insulators. We find that the Dirac point energy, the band curvature and the spin texture of surface states are crystal face-dependent. For a given face on a sphere, the Dirac point energy is determined by the bulk physics that breaks p-h symmetry in the surface normal direction and is tunable by surface potentials that preserve T symmetry. Constant energy contours near the Dirac point are ellipses with spin textures that are helical on the S/N pole, collapsed to one dimension on any side face, and tilted out-of-plane otherwise. Our findings identify a route to engineering the Dirac point physics on the surfaces of real materials.Comment: 4.1 pages, 2 figures and 1 tabl
    corecore