12,588 research outputs found
Gravitational Radiation from a Spinning Ellipsoid of Uniform Density
Gravitational radiation calculation of spinning ellipsoid of uniform density for estimation of energy loss rate of collapsing neutron sta
On the theory of polarization transfer in inhomogeneous magnetized plasmas
Polarization transfer theory in inhomogeneous magnetized plasmas with mode couplin
High Accuracy Fuel Flowmeter, Phase 1
Technology related to aircraft fuel mass - flowmeters was reviewed to determine what flowmeter types could provide 0.25%-of-point accuracy over a 50 to one range in flowrates. Three types were selected and were further analyzed to determine what problem areas prevented them from meeting the high accuracy requirement, and what the further development needs were for each. A dual-turbine volumetric flowmeter with densi-viscometer and microprocessor compensation was selected for its relative simplicity and fast response time. An angular momentum type with a motor-driven, spring-restrained turbine and viscosity shroud was selected for its direct mass-flow output. This concept also employed a turbine for fast response and a microcomputer for accurate viscosity compensation. The third concept employed a vortex precession volumetric flowmeter and was selected for its unobtrusive design. Like the turbine flowmeter, it uses a densi-viscometer and microprocessor for density correction and accurate viscosity compensation
Piezoelectric devices for vibration suppression: Modeling and application to a truss structure
For a space structure assembled from truss members, an effective way to control the structure may be to replace the regular truss elements by active members. The active members play the role of load carrying elements as well as actuators. A piezo strut, made of a stack of piezoceramics, may be an ideal active member to be integrated into a truss space structure. An electrically driven piezo strut generates a pair of forces, and is considered as a two-point actuator in contrast to a one-point actuator such as a thruster or a shaker. To achieve good structural vibration control, sensing signals compatible to the control actuators are desirable. A strain gage or a piezo film with proper signal conditioning to measure member strain or strain rate, respectively, are ideal control sensors for use with a piezo actuator. The Phase 0 CSI Evolutionary Model (CEM) at NASA Langley Research Center used cold air thrusters as actuators to control both rigid body motions and flexible body vibrations. For the Phase 1 and 2 CEM, it is proposed to use piezo struts to control the flexible modes and thrusters to control the rigid body modes. A tenbay truss structure with active piezo struts is built to study the modeling, controller designs, and experimental issues. In this paper, the tenbay structure with piezo active members is modelled using an energy method approach. Decentralized and centralized control schemes are designed and implemented, and preliminary analytical and experimental results are presented
Restoration of multichannel microwave radiometric images
A constrained iterative image restoration method is applied to multichannel diffraction-limited imagery. This method is based on the Gerchberg-Papoulis algorithm utilizing incomplete information and partial constraints. The procedure is described using the orthogonal projection operators which project onto two prescribed subspaces iteratively. Some of its properties and limitations are also presented. The selection of appropriate constraints was emphasized in a practical application. Multichannel microwave images, each having different spatial resolution, were restored to a common highest resolution to demonstrate the effectiveness of the method. Both noise-free and noisy images were used in this investigation
Critical velocity for superfluid flow across the BEC-BCS crossover
Critical velocities have been observed in an ultracold superfluid Fermi gas
throughout the BEC-BCS crossover. A pronounced peak of the critical velocity at
unitarity demonstrates that superfluidity is most robust for resonant atomic
interactions. Critical velocities were determined from the abrupt onset of
dissipation when the velocity of a moving one dimensional optical lattice was
varied. The dependence of the critical velocity on lattice depth and on the
inhomogeneous density profile was studied
Ultracold molecules: vehicles to scalable quantum information processing
We describe a novel scheme to implement scalable quantum information
processing using Li-Cs molecular state to entangle Li and Cs
ultracold atoms held in independent optical lattices. The Li atoms will
act as quantum bits to store information, and Cs atoms will serve as
messenger bits that aid in quantum gate operations and mediate entanglement
between distant qubit atoms. Each atomic species is held in a separate optical
lattice and the atoms can be overlapped by translating the lattices with
respect to each other. When the messenger and qubit atoms are overlapped,
targeted single spin operations and entangling operations can be performed by
coupling the atomic states to a molecular state with radio-frequency pulses. By
controlling the frequency and duration of the radio-frequency pulses,
entanglement can either be created or swapped between a qubit messenger pair.
We estimate operation fidelities for entangling two distant qubits and discuss
scalability of this scheme and constraints on the optical lattice lasers
Effects of extraction solvent system, time and temperature on total phenolic content of henna (Lawsonia inermis) stems
Henna plant (
Lawsonia inermis
) is an Indian medicinal plant used in traditional medicine for
the treatment of various diseases, besides its popularity as a natural dye to colour hand and hair.
Research in the recent past has accumulated enormous evidence revealing henna plant to be
an excellent source of antioxidants such as total phenolics. In this study, the extraction of total
phenolics from henna stems was evaluated using the Folin-Ciocalteu assay. A set of single factor
experiments was carried out for identifying the optimum condition of each independent variable
affecting total phenolic content (TPC) extraction efficiency of henna stems, namely the solvent
type, solvent concentration (v/v, %), extraction time (min) and extraction temperature (
o
C).
Generally, high extraction yield was obtained using aqueous acetone (about 40%) as solvent
and the extraction yield could further be increased using a prolonged time of 270 min and a
higher incubation temperature of 55°C. Under these optimized conditions, the experimental
maximum yield of TPC of 5554.15 ± 73.04 mg GAE/100 g DW was obtained
- …
