227,462 research outputs found
The scaling feature of the magnetic field induced Kondo-peak splittings
By using the full density matrix approach to spectral functions within the
numerical renormalization group method, we present a detailed study of the
magnetic field induced splittings in the spin-resolved and the total spectral
densities of a Kondo correlated quantum dot described by the single level
Anderson impurity model. The universal scaling of the splittings with magnetic
field is examined by varying the Kondo scale either by a change of local level
position at a fixed tunnel coupling or by a change of the tunnel coupling at a
fixed level position. We find that the Kondo-peak splitting in the
spin-resolved spectral function always scales perfectly for magnetic fields
in either of the two -adjusted paths. Scaling is destroyed for
fields . On the other hand, the Kondo peak splitting in
the total spectral function does slightly deviate from the conventional scaling
theory in whole magnetic field window along the coupling-varying path.
Furthermore, we show the scaling analysis suitable for all field windows within
the Kondo regime and two specific fitting scaling curves are given from which
certain detailed features at low field are derived. In addition, the scaling
dimensionless quantity and are also studied and they
can reach and exceed 1 in the large magnetic field region, in agreement with a
recent experiment [T.M. Liu, et al., Phys. Rev. Lett. 103, 026803 (2009)].Comment: 8 pages, 5 figure
NMR Probing Spin Excitations in the Ring-Like Structure of a Two-Subband System
Resistively detected nuclear magnetic resonance (NMR) is observed inside the
ring-like structure, with a quantized Hall conductance of 6e^2/h, in the phase
diagram of a two subband electron system. The NMR signal persists up to 400 mK
and is absent in other states with the same quantized Hall conductance. The
nuclear spin-lattice relaxation time, T1, is found to decrease rapidly towards
the ring center. These observations are consistent with the assertion of the
ring-like region being a ferromagnetic state that is accompanied by collective
spin excitations.Comment: 4 pages, 4 figure
- …
