89,675 research outputs found
Superfluid-Mott-Insulator Transition in a One-Dimensional Optical Lattice with Double-Well Potentials
We study the superfluid-Mott-insulator transition of ultracold bosonic atoms
in a one-dimensional optical lattice with a double-well confining trap using
the density-matrix renormalization group. At low density, the system behaves
similarly as two separated ones inside harmonic traps. At high density,
however, interesting features appear as the consequence of the quantum
tunneling between the two wells and the competition between the "superfluid"
and Mott regions. They are characterized by a rich step-plateau structure in
the visibility and the satellite peaks in the momentum distribution function as
a function of the on-site repulsion. These novel properties shed light on the
understanding of the phase coherence between two coupled condensates and the
off-diagonal correlations between the two wells.Comment: 5 pages, 7 figure
Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction
Visual media are powerful means of expressing emotions and sentiments. The
constant generation of new content in social networks highlights the need of
automated visual sentiment analysis tools. While Convolutional Neural Networks
(CNNs) have established a new state-of-the-art in several vision problems,
their application to the task of sentiment analysis is mostly unexplored and
there are few studies regarding how to design CNNs for this purpose. In this
work, we study the suitability of fine-tuning a CNN for visual sentiment
prediction as well as explore performance boosting techniques within this deep
learning setting. Finally, we provide a deep-dive analysis into a benchmark,
state-of-the-art network architecture to gain insight about how to design
patterns for CNNs on the task of visual sentiment prediction.Comment: Preprint of the paper accepted at the 1st Workshop on Affect and
Sentiment in Multimedia (ASM), in ACM MultiMedia 2015. Brisbane, Australi
Accurate determination of tensor network state of quantum lattice models in two dimensions
We have proposed a novel numerical method to calculate accurately the
physical quantities of the ground state with the tensor-network wave function
in two dimensions. We determine the tensor network wavefunction by a projection
approach which applies iteratively the Trotter-Suzuki decomposition of the
projection operator and the singular value decomposition of matrix. The norm of
the wavefunction and the expectation value of a physical observable are
evaluated by a coarse grain renormalization group approach. Our method allows a
tensor-network wavefunction with a high bond degree of freedom (such as D=8) to
be handled accurately and efficiently in the thermodynamic limit. For the
Heisenberg model on a honeycomb lattice, our results for the ground state
energy and the staggered magnetization agree well with those obtained by the
quantum Monte Carlo and other approaches.Comment: 4 pages 5 figures 2 table
Relation between directed polymers in random media and random bond dimer models
We reassess the relation between classical lattice dimer models and the
continuum elastic description of a lattice of fluctuating polymers. In the
absence of randomness we determine the density and line tension of the polymers
in terms of the bond weights of hard-core dimers on the square and the
hexagonal lattice. For the latter, we demonstrate the equivalence of the
canonical ensemble for the dimer model and the grand-canonical description for
polymers by performing explicitly the continuum limit. Using this equivalence
for the random bond dimer model on a square lattice, we resolve a previously
observed discrepancy between numerical results for the random dimer model and a
replica approach for polymers in random media. Further potential applications
of the equivalence are briefly discussed.Comment: 6 pages, 3 figure
Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems: II. Dipole-dipole versus current-current correlations
Based on Takayama-Lin-Liu-Maki model, analytical expressions for the
third-harmonic generation, DC Kerr effect, DC-induced second harmonic optical
Kerr effect, optical Kerr effect or intensity-dependent index of refraction and
DC-electric-field-induced optical rectification are derived under the static
current-current() correlation for one-dimensional infinite chains. The
results of hyperpolarizabilities under correlation are then compared
with those obtained using the dipole-dipole () correlation. The comparison
shows that the conventional correlation, albeit quite successful for
the linear case, is incorrect for studying the nonlinear optical properties of
periodic systems.Comment: 11 pages, 5 figure
Recommended from our members
Provision of secondary frequency regulation by coordinated dispatch of industrial loads and thermal power plants
Demand responsive industrial loads with high thermal inertia have potential to provide ancillary service for frequency regulation in the power market. To capture the benefit, this study proposes a new hierarchical framework to coordinate the demand responsive industrial loads with thermal power plants in an industrial park for secondary frequency control. In the proposed framework, demand responsive loads and generating resources are coordinated for optimal dispatch in two-time scales: (1) the regulation reserve of the industrial park is optimally scheduled in a day-ahead manner. The stochastic regulation signal is replaced by the specific extremely trajectories. Furthermore, the extremely trajectories are achieved by the day-ahead predicted regulation mileage. The resulting benefit is to transform the stochastic reserve scheduling problem into a deterministic optimization; (2) a model predictive control strategy is proposed to dispatch the industry park in real time with an objective to maximize the revenue. The proposed technology is tested using a real-world industrial electrolysis power system based upon Pennsylvania, Jersey, and Maryland (PJM) power market. Various scenarios are simulated to study the performance of the proposed approach to enable industry parks to provide ancillary service into the power market. The simulation results indicate that an industrial park with a capacity of 500 MW can provide up to 40 MW ancillary service for participation in the secondary frequency regulation. The proposed strategy is demonstrated to be capable of maintaining the economic and secure operation of the industrial park while satisfying performance requirements from the real world regulation market
Experimental entanglement of 25 individually accessible atomic quantum interfaces
Quantum interface links stationary qubits in quantum memory with flying
photonic qubits in optical transmission channels and constitutes a critical
element for future quantum internet. Entanglement of quantum interfaces is a
key step for realization of quantum networks. Through heralded detection of
photon interference, here we generate multipartite entanglement between 25 (or
9) individually addressable quantum interfaces in a multiplexed atomic quantum
memory array and confirm genuine 22 (or 9) partite entanglement, respectively.
Experimental entanglement of a record-high number of quantum interfaces makes
an important enabling step towards realization of quantum networks,
long-distance quantum communication, and multipartite quantum information
processing.Comment: 11 pages, 5 figure
Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells
Electron spin relaxation in paramagnetic Ga(Mn)As quantum wells is studied
via the fully microscopic kinetic spin Bloch equation approach where all the
scatterings, such as the electron-impurity, electron-phonon, electron-electron
Coulomb, electron-hole Coulomb, electron-hole exchange (the Bir-Aronov-Pikus
mechanism) and the - exchange scatterings, are explicitly included. The
Elliot-Yafet mechanism is also incorporated. From this approach, we study the
spin relaxation in both -type and -type Ga(Mn)As quantum wells. For
-type Ga(Mn)As quantum wells where most Mn ions take the interstitial
positions, we find that the spin relaxation is always dominated by the DP
mechanism in metallic region. Interestingly, the Mn concentration dependence of
the spin relaxation time is nonmonotonic and exhibits a peak. This behavior is
because that the momentum scattering and the inhomogeneous broadening have
different density dependences in the non-degenerate and degenerate regimes. For
-type Ga(Mn)As quantum wells, we find that Mn concentration dependence of
the spin relaxation time is also nonmonotonic and shows a peak. Differently,
this behavior is because that the - exchange scattering (or the
Bir-Aronov-Pikus) mechanism dominates the spin relaxation in the high Mn
concentration regime at low (or high) temperature, whereas the DP mechanism
determines the spin relaxation in the low Mn concentration regime. The
Elliot-Yafet mechanism also contributes the spin relaxation at intermediate
temperature. The spin relaxation time due to the DP mechanism increases with Mn
concentration due to motional narrowing, whereas those due to the spin-flip
mechanisms decrease with Mn concentration, which thus leads to the formation of
the peak.... (The remaining is omitted due to the space limit)Comment: 12 pages, 8 figures, Phys. Rev. B 79, 2009, in pres
- …
