19,104 research outputs found

    An Enhanced Perturbational Study on Spectral Properties of the Anderson Model

    Full text link
    The infinite-UU single impurity Anderson model for rare earth alloys is examined with a new set of self-consistent coupled integral equations, which can be embedded in the large NN expansion scheme (NN is the local spin degeneracy). The finite temperature impurity density of states (DOS) and the spin-fluctuation spectra are calculated exactly up to the order O(1/N2)O(1/N^2). The presented conserving approximation goes well beyond the 1/N1/N-approximation ({\em NCA}) and maintains local Fermi-liquid properties down to very low temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in the impurity DOS is in accordance with Friedel's sum rule. For N=2N=2 its shift toward the chemical potential, compared to the {\em NCA}, can be traced back to the influence of the vertex corrections. The width and height of the ASR is governed by the universal low temperature energy scale TKT_K. Temperature and degeneracy NN-dependence of the static magnetic susceptibility is found in excellent agreement with the Bethe-Ansatz results. Threshold exponents of the local propagators are discussed. Resonant level regime (N=1N=1) and intermediate valence regime (ϵf<Δ|\epsilon_f| <\Delta) of the model are thoroughly investigated as a critical test of the quality of the approximation. Some applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof

    Influence of Correlated Hybridization on the Conductance of Molecular Transistors

    Full text link
    We study the spin-1/2 single-channel Anderson impurity model with correlated (occupancy dependent) hybridization for molecular transistors using the numerical renormalization-group method. Correlated hybridization can induce nonuniversal deviations in the normalized zero-bias conductance and, for some parameters, modestly enhance the spin polarization of currents in applied magnetic field. Correlated hybridization can also explain a gate-voltage dependence to the Kondo scale similar to what has been observed in recent experiments.Comment: 4 pages, 5 figure

    Where is the fuzz? Undetected Lyman alpha nebulae around QSOs at z~2.3

    Full text link
    We observed a small sample of 5 radio-quiet QSOs with integral field spectroscopy to search for possible extended emission in the Lyα\alpha line. We subtracted the QSO point sources using a simple PSF self-calibration technique that takes advantage of the simultaneous availability of spatial and spectral information. In 4 of the 5 objects we find no significant traces of extended Lyα\alpha emission beyond the contribution of the QSO nuclei itself, while in UM 247 there is evidence for a weak and spatially quite compact excess in the Lyα\alpha line at several kpc outside the nucleus. For all objects in our sample we estimated detection limits for extended, smoothly distributed Lyα\alpha emission by adding fake nebulosities into the datacubes and trying to recover them after PSF subtraction. Our observations are consistent with other studies showing that giant Lyα\alpha nebulae such as those found recently around some quasars are very rare. Lyα\alpha fuzz around typical radio-quiet QSOs is fainter, less extended and is therefore much harder to detect. The faintness of these structures is consistent with the idea that radio-quiet QSOs typically reside in dark matter haloes of modest masses.Comment: 12 Pages, Accepted for publication in A&

    The young star cluster system of the Antennae galaxies

    Get PDF
    “The original publication is available at www.springerlink.com”. Copyright Springer. DOI: 10.1007/s10509-009-0103-xThe study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (such as the luminosity function; LF) of YSC systems are still being debated. Here, we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.Peer reviewe

    A Numerical Renormalization Group approach to Green's Functions for Quantum Impurity Models

    Full text link
    We present a novel technique for the calculation of dynamical correlation functions of quantum impurity systems in equilibrium with Wilson's numerical renormalization group. Our formulation is based on a complete basis set of the Wilson chain. In contrast to all previous methods, it does not suffer from overcounting of excitation. By construction, it always fulfills sum rules for spectral functions. Furthermore, it accurately reproduces local thermodynamic expectation values, such as occupancy and magnetization, obtained directly from the numerical renormalization group calculations.Comment: 13 pages, 7 figur

    Galactic Archaeology with CoRoT and APOGEE: Creating mock observations from a chemodynamical model

    Get PDF
    In a companion paper, we have presented the combined asteroseismic-spectroscopic dataset obtained from CoRoT lightcurves and APOGEE infra-red spectra for 678 solar-like oscillating red giants in two fields of the Galactic disc (CoRoGEE). We have measured chemical abundance patterns, distances, and ages of these field stars which are spread over a large radial range of the Milky Way's disc. Here we show how to simulate this dataset using a chemodynamical Galaxy model. We also demonstrate how the observation procedure influences the accuracy of our estimated ages.Comment: 5 pages, 6 figures. To appear in Astronomische Nachrichten, special issue "Reconstruction the Milky Way's History: Spectroscopic surveys, Asteroseismology and Chemo-dynamical models", Guest Editors C. Chiappini, J. Montalb\'an, and M. Steffe

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Spinful bosons in an optical lattice

    Get PDF
    We analyze the behavior of cold spin-1 particles with antiferromagnetic interactions in a one-dimensional optical lattice using density matrix renormalization group calculations. Correlation functions and the dimerization are shown and we also present results for the energy gap between ground state and the spin excited states. We confirm the anticipated phase diagram, with Mott-insulating regions of alternating dimerized S=1 chains for odd particle density versus on-site singlets for even density. We find no evidence for any additional ordered phases in the physically accessible region, however for sufficiently large spin interaction, on-site singlet pairs dominate leading, for odd density, to a breakdown of the Mott insulator or, for even density, a real-space singlet superfluid.Comment: Minor revisions and clarification
    corecore