233 research outputs found
Evaluation and Selection of the MEUST Submarine Site
http://meust.cnrs.fr/MEUST_site_choice_report.pdfThis report summarizes the results of the investiga tions performed to select the MEUST submarine site. Measurement campaigns have been conducted during 2012 on several locations off shore of Toulon. During this period the most distant site has s hown a higher sensitivity to bioluminescence seasonal variations, whereas the more coastal sites had simila r conditions as Antares. This observation combined with logistic constraints leads to select a site located at similar latitude as Antares but more western on the other side of the CC5 telecommunication cable to Cors ica. The route of the MEUST Main Electro-Optical Cable has been defined accordingly, with some flexib ility to allow fine tuning of its end point as function of the outcome of the final site characterizations scheduled in 2013
Status and Recent Results of the Acoustic Neutrino Detection Test System AMADEUS
The AMADEUS system is an integral part of the ANTARES neutrino telescope in
the Mediterranean Sea. The project aims at the investigation of techniques for
acoustic neutrino detection in the deep sea. Installed at a depth of more than
2000m, the acoustic sensors of AMADEUS are based on piezo-ceramics elements for
the broad-band recording of signals with frequencies ranging up to 125kHz.
AMADEUS was completed in May 2008 and comprises six "acoustic clusters", each
one holding six acoustic sensors that are arranged at distances of roughly 1m
from each other. The clusters are installed with inter-spacings ranging from
15m to 340m. Acoustic data are continuously acquired and processed at a
computer cluster where online filter algorithms are applied to select a
high-purity sample of neutrino-like signals. 1.6 TB of data were recorded in
2008 and 3.2 TB in 2009. In order to assess the background of neutrino-like
signals in the deep sea, the characteristics of ambient noise and transient
signals have been investigated. In this article, the AMADEUS system will be
described and recent results will be presented.Comment: 7 pages, 8 figures. Proceedings of ARENA 2010, the 4th International
Workshop on Acoustic and Radio EeV Neutrino Detection Activitie
Measurement of Atmospheric Neutrino Oscillations with the ANTARES Neutrino Telescope
The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total
live time of 863 days, are used to measure the oscillation parameters of
atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20
GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon
neutrinos of such energies crossing the Earth. The parameters determining the
oscillation of atmospheric neutrinos are extracted by fitting the event rate as
a function of the ratio of the estimated neutrino energy and reconstructed
flight path through the Earth. Measurement contours of the oscillation
parameters in a two-flavour approximation are derived. Assuming maximum mixing,
a mass difference of eV is
obtained, in good agreement with the world average value.Comment: 9 pages, 5 figure
Acoustic and optical variations during rapid downward motion episodes in the deep north-western Mediterranean Sea
An Acoustic Doppler Current Profiler (ADCP) was moored at the deep-sea site
of the ANTARES neutrino telescope near Toulon, France, thus providing a unique
opportunity to compare high-resolution acoustic and optical observations
between 70 and 170 m above the sea bed at 2475 m. The ADCP measured downward
vertical currents of magnitudes up to 0.03 m s-1 in late winter and early
spring 2006. In the same period, observations were made of enhanced levels of
acoustic reflection, interpreted as suspended particles including zooplankton,
by a factor of about 10 and of horizontal currents reaching 0.35 m s-1. These
observations coincided with high light levels detected by the telescope,
interpreted as increased bioluminescence. During winter 2006 deep dense-water
formation occurred in the Ligurian subbasin, thus providing a possible
explanation for these observations. However, the 10-20 days quasi-periodic
episodes of high levels of acoustic reflection, light and large vertical
currents continuing into the summer are not direct evidence of this process. It
is hypothesized that the main process allowing for suspended material to be
moved vertically later in the year is local advection, linked with topographic
boundary current instabilities along the rim of the 'Northern Current'.Comment: 30 pages, 7 figure
A First Search for coincident Gravitational Waves and High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007
We present the results of the first search for gravitational wave bursts
associated with high energy neutrinos. Together, these messengers could reveal
new, hidden sources that are not observed by conventional photon astronomy,
particularly at high energy. Our search uses neutrinos detected by the
underwater neutrino telescope ANTARES in its 5 line configuration during the
period January - September 2007, which coincided with the fifth and first
science runs of LIGO and Virgo, respectively. The LIGO-Virgo data were analysed
for candidate gravitational-wave signals coincident in time and direction with
the neutrino events. No significant coincident events were observed. We place
limits on the density of joint high energy neutrino - gravitational wave
emission events in the local universe, and compare them with densities of
merger and core-collapse events.Comment: 19 pages, 8 figures, science summary page at
http://www.ligo.org/science/Publication-S5LV_ANTARES/index.php. Public access
area to figures, tables at
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p120000
A search for neutrino emission from the Fermi bubbles with the ANTARES telescope
Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source
Searches for clustering in the time integrated skymap of the ANTARES neutrino telescope
This paper reports a search for spatial clustering of the arrival directions of high energy muon neutrinos detected by the ANTARES neutrino telescope. An improved two-point correlation method is used to study the autocorrelation of 3058 neutrino candidate events as well as cross-correlations with other classes of astrophysical objects: sources of high energy gamma rays, massive black holes and nearby galaxies. No significant deviations from the isotropic distribution of arrival directions expected from atmospheric backgrounds are observed
The positioning system of the ANTARES Neutrino Telescope
The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described
Absolute mass lower limit for the lightest neutralino of the MSSM from data at up to 209 GeV
Charginos and neutralinos are searched for in the data collected by the ALEPH experiment at LEP for centre-of-mass energies up to 209 GeV. The negative result of these searches is combined with those from searches for sleptons and Higgs bosons to derive an absolute lower limit of 43.1 GeV/c(2) on the mass of the lightest supersymmetric particle (LSP), assumed to be the,lightest neutralino. This limit is obtained in the framework of the MSSM with R-parity conservation and with gaugino and sfermion mass unification at the GUT scale and assuming no mixing in the stau sector. The LSP limit degrades only slightly to 42.4 GeV/c(2) if stau mixing is considered. Within the more constrained framework of minimal supergravity, the limit is 50 GeV/c(2)
- …
