4,375 research outputs found
Quasiquartet CEF ground state with possible quadrupolar ordering in the tetragonal compound YbRuGe
e have investigated the magnetic properties of YbRuGe by means of
magnetic susceptibility (T), specific heat C(T) and electrical
resistivity (T) measurements performed on flux grown single crystals. The
Curie-Weiss behavior of (T) along the easy plane, the large magnetic
entropy at low temperatures and the weak Kondo like increase in (T)
proves a stable trivalent Yb state. Anomalies in C(T), (T) and (T)
at T = 10.2 K, T = 6.5 K and T = 5.7 K evidence complex
ordering phenomena, T being larger than the highest Yb magnetic ordering
temperature found up to now. The magnetic entropy just above T amounts to
almost Rln4, indicating that the crystal electric field (CEF) ground state is a
quasiquartet instead of the expected doublet. The behavior at T is rather
unusual and suggest that this transition is related to quadrupolar ordering,
being a consequence of the CEF quasiquartet ground state. The combination of a
quasiquartet CEF ground state, a high ordering temperature, and the relevance
of quadrupolar interactions makes YbRuGe a rather unique system
among Yb based compounds.Comment: 11 pages, 5 figure, submitted to PRB rapi
Re-entrant hidden order at a metamagnetic quantum critical end point
Magnetization measurements of URu2Si2 in pulsed magnetic fields of 44 T
reveal that the hidden order phase is destroyed before appearing in the form of
a re-entrant phase between ~ 36 and 39 T. Evidence for conventional itinerant
electron metamagnetism at higher temperatures suggests that the re-entrant
phase is created in the vicinity of a quantum critical end point.Comment: 8 pages, including 3 figures (Physical Review Letters, in press) a
systematic error in the field calibration has been fixed since the original
submission of this manuscrip
Non-Fermi-liquid behavior in Ce(RuFe)Ge: cause and effect
We present inelastic neutron scattering measurements on the intermetallic
compounds Ce(RuFe)Ge (=0.65, 0.76 and 0.87). These
compounds represent samples in a magnetically ordered phase, at a quantum
critical point and in the heavy-fermion phase, respectively. We show that at
high temperatures the three compositions have the identical response of a local
moment system. However, at low temperatures the spin fluctuations in the
critical composition are given by non-Fermi-liquid dynamics, while the spin
fluctuations in the heavy fermion system show a simple exponential decay in
time. In both compositions, the lifetime of the fluctuations is determined
solely by the distance to the quantum critical point. We discuss the
implications of these observations regarding the possible origins of
non-Fermi-liquid behavior in this system.Comment: 4 figures, submitted to PR
Non-Fermi Liquid Behavior In Quantum Critical Systems
The problem of an electron gas interacting via exchanging transverse gauge
bosons is studied using the renormalization group method. The long wavelength
behavior of the gauge field is shown to be in the Gaussian universality class
with a dynamical exponent in dimensions .
This implies that the gauge coupling constant is exactly marginal. Scattering
of the electrons by the gauge mode leads to non-Fermi liquid behavior in . The asymptotic electron and gauge Green's functions, interaction
vertex, specific heat and resistivity are presented.Comment: 9 pages in REVTEX 2.0. Submitted to Phys. Rev. Lett. 3 figures in
postscript files can be obtained at [email protected]. The filename is
gan.figures.tar.z and it's compressed. You can uncompress it by using
commands: "uncompress gan.figures.tar.z" and "tar xvf gan.figures.tar
Theory for Magnetic Anisotropy of Field-Induced Insulator-to-Metal Transition in Cubic Kondo Insulator YbB_{12}
Magnetization and energy gap of Kondo insulator YbB_{12} are calculated
theoretically based on the previously proposed tight-binding model composed of
Yb 5d and 4f orbitals. It is found that magnetization
curves are almost isotropic, naturally expected from the cubic symmetry, but
that the gap-closing field has an anisotropy: the gap closes faster for the
field in (100) direction than in (110) and (111) directions, in accord with the
experiments. This is qualitatively understood by considering the maximal
eigenvalues of the total angular momentum operators projected on each direction
of the magnetic field. But the numerical calculation based on the band model
yields better agreement with the experiment.Comment: 4 pages, 4 figures, to appear in J. Phys. Soc. Jp
Intermediate Valence Model for the Colossal Magnetoresistance in Tl_{2}Mn_{2}O_{7}
The colossal magnetoresistance exhibited by Tl_{2}Mn_{2}O_{7} is an
interesting phenomenon, as it is very similar to that found in perovskite
manganese oxides although the compound differs both in its crystalline
structure and electronic properties from the manganites. At the same time,
other pyrochlore compounds, though sharing the same structure with
Tl_{2}Mn_{2}O_{7}, do not exhibit the strong coupling between magnetism and
transport properties found in this material. Mostly due to the absence of
evidence for significant doping into the Mn-O sublattice, and the tendency of
Tl to form conduction bands, the traditional double exchange mechanism
mentioned in connection with manganites does not seem suitable to explain the
experimental results in this case. We propose a model for Tl_{2}Mn_{2}O_{7}
consisting of a lattice of intermediate valence ions fluctuating between two
magnetic configurations, representing Mn-3d orbitals, hybridized with a
conduction band, which we associate with Tl. This model had been proposed
originally for the analysis of intermediate valence Tm compounds. With a
simplified treatment of the model we obtain the electronic structure and
transport properties of Tl_{2}Mn_{2}O_{7}, with good qualitative agreement to
experiments. The presence of a hybridization gap in the density of states seems
important to understand the reported Hall data.Comment: 8 pages + 5 postscript fig
Calculation of Optical Conductivity of YbB using Realistic Tight-Binding Model
Based on the previously reported tight-binding model fitted to the LDA+U band
calculation, optical conductivity of the prototypical Kondo insulator
YbB is calculated theoretically. Many-body effects are taken into
account by the self-consistent second order perturbation theory. The gross
shape of the optical conductivity observed in experiments are well described by
the present calculation, including their temperature-dependences.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn.
Vol.73, No.10 (2004
High-pressure transport properties of CeRu_2Ge_2
The pressure-induced changes in the temperature-dependent thermopower S(T)
and electrical resistivity \rho(T) of CeRu_2Ge_2 are described within the
single-site Anderson model. The Ce-ions are treated as impurities and the
coherent scattering on different Ce-sites is neglected. Changing the
hybridisation \Gamma between the 4f-states and the conduction band accounts for
the pressure effect. The transport coefficients are calculated in the
non-crossing approximation above the phase boundary line. The theoretical S(T)
and \rho(T) curves show many features of the experimental data. The seemingly
complicated temperature dependence of S(T) and \rho(T), and their evolution as
a function of pressure, is related to the crossovers between various fixed
points of the model.Comment: 9 pages, 10 figure
Metamagnetic Quantum Criticality in Sr3Ru2O7
We consider the metamagnetic transition in the bilayer ruthenate, , and use this to motivate a renormalization group treatment of a zero-temperature quantum-critical end-point. We summarize the results of mean field theory and give a pedagogical derivation of the renormalization-group equations. These are then solved to yield numerical results for the susceptibility, the specific heat and the resistivity exponent which can be compared with measured data on to provide a powerful test for the standard framework of metallic quantum criticality. The observed approach to the critical point is well-described by our theory explaining a number of unusual features of experimental data. The puzzling behaviour very near to the critical point itself, though, is not accounted for by this, or any other theory with a Fermi surface
Formation Mechanism of Hybridization Gap in Kondo Insulators based on a Realistic Band Model and Application to YbB
A new LDA+U band calculation is performed on the Kondo insulator material
YbB and an energy gap of about 0.001Ryd is obtained. Based on this, a
simple tight-binding model with 5d and 4f orbitals on Yb
atoms and the nearest neighbor -bonds between them is constructed with
a good agreement to the above the LDA+U calculation near the gap. The density
of states is also calculated and the shape is found to be very asymmetric with
respect to the gap. A formation mechanism of the gap is clarified for the first
time in a realistic situation with the orbital degeneracies in both conduction
bands and the f states. This model can be a useful starting point for
incorporating the strong correlation effect, and for understanding all the
thermal, thermoelectric, transport and magnetic properties of YbB.Comment: 15 pages, 15 figures, to appear in J. Phys. Soc. Jpn. Vol. 72 No. 5
(2003
- …
