92 research outputs found
Charge and spin distributions in GaMnAs/GaAs Ferromagnetic Multilayers
A self-consistent electronic structure calculation based on the
Luttinger-Kohn model is performed on GaMnAs/GaAs multilayers. The Diluted
Magnetic Semiconductor layers are assumed to be metallic and ferromagnetic. The
high Mn concentration (considered as 5% in our calculation) makes it possible
to assume the density of magnetic moments as a continuous distribution, when
treating the magnetic interaction between holes and the localized moment on the
Mn(++) sites. Our calculation shows the distribution of heavy holes and light
holes in the structure. A strong spin-polarization is observed, and the charge
is concentrated mostly on the GaMnAs layers, due to heavy and light holes with
their total angular momentum aligned anti-parallel to the average
magnetization. The charge and spin distributions are analyzed in terms of their
dependence on the number of multilayers, the widths of the GaMnAs and GaAs
layers, and the width of lateral GaAs layers at the borders of the structure.Comment: 12 pages,7 figure
Uso da luz branca intensa modulada para controle de doenças em frutos pós-colheita.
bitstream/CNPDIA-2009-09/11038/1/CT87_2007.pd
Moxifloxacin for the treatment of pulmonary tuberculosis in children: A single center experience
Successful Hematopoietic Stem Cell Transplantation in a Patient with Complete IFN-γ Receptor 2 Deficiency: a Case Report and Literature Review
Mutations in SRY and WT1 genes required for gonadal development are not responsible for XY partial gonadal dysgenesis
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.172
Mutations In Sry And Wt1 Genes Required For Gonadal Development Are Not Responsible For Xy Partial Gonadal Dysgenesis.
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.3817-2
- …
