51 research outputs found

    A Metric Discrepancy Result With Given Speed

    Get PDF
    It is known that the discrepancy DN{ kx} of the sequence { kx} satisfies NDN{ kx} = O((log N) (log log N) 1 + ε) a.e. for all ε> 0 , but not for ε= 0. For nk= θk, θ> 1 we have NDN{ nkx} ≦ (Σ θ+ ε) (2 Nlog log N) 1 / 2 a.e. for some 0 0 , but not for ε 0 , there exists a sequence { nk} of positive integers such that NDN{ nkx} ≦ (Σ + ε) Ψ (N) eventually holds a.e. for ε> 0 , but not for ε< 0. We also consider a similar problem on the growth of trigonometric sums. © 2016, Akadémiai Kiadó, Budapest, Hungary

    GCD sums from Poisson integrals and systems of dilated functions

    Get PDF
    Upper bounds for GCD sums of the form (Formula Presented) are established, where (nk)1≤k≤N is any sequence of distinct positive integers and 0 1/2, a result that in turn settles two longstanding problems on the a.e. behavior of systems of dilated functions: the a.e. growth of sums of the form (Formula Presented)=1 f(nkx) and the a.e. convergence of (Formula Presented)=1 ckf(nkx) when f is 1-periodic and of bounded variation or in Lip1/2. © European Mathematical Society 2015

    Strong approximation of lacunary series with random gaps

    Get PDF
    We investigate the asymptotic behavior of sums (Formula presented.), where f is a mean zero, smooth periodic function on (Formula presented.) and (Formula presented.) is a random sequence such that the gaps (Formula presented.) are i.i.d. Our result shows that, in contrast to the classical Salem–Zygmund theory, the almost sure behavior of lacunary series with random gaps can be described very precisely without any assumption on the size of the gaps. © 2017 Springer-Verlag Wie

    Point sets on the sphere S2\mathbb{S}^2 with small spherical cap discrepancy

    Full text link
    In this paper we study the geometric discrepancy of explicit constructions of uniformly distributed points on the two-dimensional unit sphere. We show that the spherical cap discrepancy of random point sets, of spherical digital nets and of spherical Fibonacci lattices converges with order N1/2N^{-1/2}. Such point sets are therefore useful for numerical integration and other computational simulations. The proof uses an area-preserving Lambert map. A detailed analysis of the level curves and sets of the pre-images of spherical caps under this map is given

    On the class of limits of lacunary trigonometric series

    No full text

    On the class of limits of lacunary trigonometric series

    Full text link

    On the law of the iterated logarithm for permuted lacunary sequences

    Full text link
    corecore