668 research outputs found
Plasma-Induced Frequency Chirp of Intense Femtosecond Lasers and Its Role in Shaping High-Order Harmonic Spectral Lines
We investigate the self-phase modulation of intense femtosecond laser pulses
propagating in an ionizing gas and its effects on collective properties of
high-order harmonics generated in the medium. Plasmas produced in the medium
are shown to induce a positive frequency chirp on the leading edge of the
propagating laser pulse, which subsequently drives high harmonics to become
positively chirped. In certain parameter regimes, the plasma-induced positive
chirp can help to generate sharply peaked high harmonics, by compensating for
the dynamically-induced negative chirp that is caused by the steep intensity
profile of intense short laser pulses.Comment: 5 pages, 5 figure
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
The GINGER Project and status of the ring-laser of LNGS
A ring-laser attached to the Earth measures the absolute angular velocity of the Earth summed
to the relativistic precessions, de Sitter and Lense-Thirring. GINGER (Gyroscopes IN GEneral
Relativity) is a project aiming at measuring the LenseThirring effect with a ground based detector;
it is based on an array of ring-lasers. Comparing the Earth angular velocity measured
by IERS and the measurement done with the GINGER array, the Lense-Thirring effect can be
evaluated. Compared to the existing space experiments, GINGER provides a local measurement,
not the averaged value and it is unnecessary to model the gravitational field. It is a proposal,
but it is not far from being a reality. In fact the GrossRing G of the Geodesy Observatory of
Wettzell has a sensitivity very close to the necessary one. G ofWettzell is part of the IERS system
which provides the measure of the Length Of the DAY (LOD); G provides information on the fast
component of LOD. In the last few years, a roadmap toward GINGER has been outlined. The
experiment G-GranSasso, financed by the INFN Commission II, is developing instrumentations
and tests along the roadmap of GINGER. In this short paper the main activities of G-GranSasso
and some results will be presented. The first results of GINGERino will be reported, GINGERino
is the large ring-laser installed inside LNGS and now in the commissioning phase. Ring-lasers
provide as well important informations for geophysics, in particular the rotational seismology,
which is an emerging field of science. GINGERino is one of the three experiments of common
interest between INFN and INGV
Novel antiproliferative chimeric compounds with marked histone deacetylase inhibitory activity
Given our interest in finding potential antitumor agents and in view of the multifactorial mechanistic nature of cancer, in the present work, taking advantage of the multifunctional ligands approach, new chimeric molecules were designed and synthesized by combining in single chemical entities structural features of SAHA, targeting histone deacetylases (HDACs), with substituted stilbene or terphenyl derivatives previously obtained by us and endowed with antiproliferative and pro-apoptotic activity. The new chimeric derivatives were characterized with respect to their cytotoxic activity and their effects on cell cycle progression on different tumor cell lines, as well as their HDACs inhibition. Among the other, trans -6 showed the most interesting biological profile, as it exhibited a strong pro-apoptotic activity in tumor cell lines in comparison with both of its parent compounds and a marked HDAC inhibition
Single-Cell Photothermal Analysis Induced by MoS2 Nanoparticles by Raman Spectroscopy
Two-dimensional nanomaterials, such as MoS2 nanosheets, have been attracting increasing attention in cancer diagnosis and treatment, thanks to their peculiar physical and chemical properties. Although the mechanisms which regulate the interaction between these nanomaterials and cells are not yet completely understood, many studies have proved their efficient use in the photothermal treatment of cancer, and the response to MoS2 nanosheets at the single-cell level is less investigated. Clearly, this information can help in shedding light on the subtle cellular mechanisms ruling the interaction of this 2D material with cells and, eventually, to its cytotoxicity. In this study, we use confocal micro-Raman spectroscopy to reconstruct the thermal map of single cells targeted with MoS2 under continuous laser irradiation. The experiment is performed by analyzing the water O-H stretching band around 3,400 cm−1 whose tetrahedral structure is sensitive to the molecular environment and temperature. Compared to fluorescence-based approaches, this Raman-based strategy for temperature measurement does not suffer fluorophore instability, which can be significant under continuous laser irradiation. We demonstrate that irradiation of human breast cancer MCF7 cells targeted with MoS2 nanosheets causes a relevant photothermal effect, which is particularly high in the presence of MoS2 nanosheet aggregates. Laser-induced heating is strongly localized near such particles which, in turn, tend to accumulate near the cytoplasmic membrane. Globally, our experimental outcomes are expected to be important for tuning the nanosheet fabrication process
Editorial: Nanobiophotonics and Related Novel Materials Aimed at Biosciences and Biomedicine
Editorial on the Research Topic
Nanobiophotonics and Related Novel Materials Aimed at Biosciences and Biomedicin
A combinatorial approach to gene expression analysis: DNA microarrays.
The microarray technology is based on analytical tools that parallelize the quantitative and qualitative analysis of nucleic acids, proteins and tissue sections one of its more recent evolutions-. By miniaturizing the size of the reaction and sensing area, microarrays allow to assess at the activity of thousands of genes in a given tissue or cell line at once in a rapid and quantitative way, and to carry out serial comparative tests in multiple samples. These tools, that stem from the innovations resulting from the technological improvements and knowledge arising from the genome sequencing projects, can be considered as a combinatorial technique that can rapidly provide significant information about complex cellular pathways and processes within one or few ‘‘mass scale’’ and comprehensive testing of a biological sample’s composition
One- and two-photon time-resolved fluorescence of visible and near-infrared dyes in scattering media
n/
Extracellular vesicle-based nucleic acid delivery: Current advances and future perspectives in cancer therapeutic strategies
Extracellular vesicles (EVs) are sophisticated and sensitive messengers released by cells to communicate with and influence distant and neighboring cells via selective transfer of bioactive content, including protein lipids and nucleic acids. EVs have therefore attracted broad interest as new and refined potential therapeutic systems in many diseases, including cancer, due to their low immunogenicity, non-toxicity, and elevated bioavailability. They might serve as safe and effective vehicles for the transport of therapeutic molecules to specific tissues and cells. In this review, we focus on EVs as a vehicle for gene therapy in cancer. We describe recent developments in EV engineering to achieve efficient intracellular delivery of cancer therapeutics and avoid off-target effects, to provide an overview of the potential applications of EV-mediated gene therapy and the most promising biomedical advances
Essential versus accessory aspects of cell death: recommendations of the NCCD 2015
Cells exposed to extreme physicochemical or mechanical stimuli die in an uncontrollable manner, as a result of their immediate structural breakdown. Such an unavoidable variant of cellular demise is generally referred to as ‘accidental cell death’ (ACD). In most settings, however, cell death is initiated by a genetically encoded apparatus, correlating with the fact that its course can be altered by pharmacologic or genetic interventions. ‘Regulated cell death’ (RCD) can occur as part of physiologic programs or can be activated once adaptive responses to perturbations of the extracellular or intracellular microenvironment fail. The biochemical phenomena that accompany RCD may be harnessed to classify it into a few subtypes, which often (but not always) exhibit stereotyped morphologic features. Nonetheless, efficiently inhibiting the processes that are commonly thought to cause RCD, such as the activation of executioner caspases in the course of apoptosis, does not exert true cytoprotective effects in the mammalian system, but simply alters the kinetics of cellular demise as it shifts its morphologic and biochemical correlates. Conversely, bona fide cytoprotection can be achieved by inhibiting the transduction of lethal signals in the early phases of the process, when adaptive responses are still operational. Thus, the mechanisms that truly execute RCD may be less understood, less inhibitable and perhaps more homogeneous than previously thought. Here, the Nomenclature Committee on Cell Death formulates a set of recommendations to help scientists and researchers to discriminate between essential and accessory aspects of cell death
- …
