1,136 research outputs found
The dam-break problem for concentrated suspensions of neutrally buoyant particles
This paper addresses the dam-break problem for particle suspensions, that is, the flow of a finite volume of suspension released suddenly down an inclined flume. We were concerned with concentrated suspensions made up of neutrally buoyant non-colloidal particles within a Newtonian fluid. Experiments were conducted over wide ranges of slope, concentration and mass. The major contributions of our experimental study are the simultaneous measurement of local flow properties far from the sidewalls (velocity profile and, with lower accuracy, particle concentration) and macroscopic features (front position, flow depth profile). To that end, the refractive index of the fluid was adapted to closely match that of the particles, enabling data acquisition up to particle volume fractions of 60 %. Particle migration resulted in the blunting of the velocity profile, in contrast to the parabolic profile observed in homogeneous Newtonian fluids. The experimental results were compared with predictions from lubrication theory and particle migration theory. For solids fractions as large as 45 %, the flow behaviour did not differ much from that of a homogeneous Newtonian fluid. More specifically, we observed that the velocity profiles were closely approximated by a parabolic form and there was little evidence of particle migration throughout the depth. For particle concentrations in the 52-56 % range, the flow depth and front position were fairly well predicted by lubrication theory, but taking a closer look at the velocity profiles revealed that particle migration had noticeable effects on the shape of the velocity profile (blunting), but had little impact on its strength, which explained why lubrication theory performed well. Particle migration theories (such as the shear-induced diffusion model) successfully captured the slow evolution of the velocity profiles. For particle concentrations in excess of 56 %, the macroscopic flow features were grossly predicted by lubrication theory (to within 20 % for the flow depth, 50 % for the front position). The flows seemed to reach a steady state, i.e. the shape of the velocity profile showed little time dependenc
The dam-break problem for viscous fluids in the high-capillary-number limit
Experiments were undertaken to investigate dam-break flows where a finite volume of highly viscous fluid (glucose with viscosity μ ≈ 350 Pa s) maintained behind a lock gate was released into a horizontal or inclined flume. The resulting sequence of flow-depth profiles was tracked using a three-dimensional visualization system. In the low-Reynolds-number and high-capillary-number limits, analytical solutions can be obtained from the Navier-Stokes equations using lubrication theory and matched asymptotic expansions. At shallow slopes, similarity solutions can also be worked out. While the variation in the front position scaled with time as predicted by theory for both horizontal and sloping flumes, there was a systematic delay in the front position observed. Moreover, taking a closer look at the experimental flow-depth profiles shows that they were similar, but they noticeably deviated from the theoretical similarity form for horizontal planes. For sloping beds, the flow-depth profile is correctly predicted provided that different scalings are used at shallow and large slope
Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.
Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures
Peluang Peningkatan Tipe Terminal di Kecamatan Banyumaik (Analisis Demand dan Supply)
Kecamatan Banyumanik merupakan kecamatan yang terus mengalami perkembangan baik dari jumlah penduduk maupun pelayanan kotanya. Kecamatan ini juga berbatasan langsung dengan kabupaten Semarang dan menjadi gerbang koridor semarang atas atau semarang bagian Selatan sehingga memiliki pergerakan yang tinggi sebagai jalur keluar masuknya kota Semarang. Pergerakan yang tinggi tersebut tidak diimbangi dengan ketersediaan fasilitas transportasi pendukung yaitu terminal. Terminal merupakan salah satu fasilitas utama yang memiliki peran penting dalam sistem transportasi. Menurut keputusan menteri nomor 35 tahun 2003 pengertian terminal adalah prasarana transportasi jalan untuk keperluan memuat dan menurunkan orang dan/atau barang serta mengatur kedatangan dan pemberangkatan kendaraan umum, yang merupakan salah satu wujud simpul jaringan transportasi. Terminal juga memiliki peran yang penting sebagai unsur tata ruang dalam kaitannya untuk meningkatkan mobilitas dan efisiensi kehidupan kota. Terminal merupakan tempat untuk mengurangi kemacetan dimana dapat mengatur lokasi pergantian moda transportasi menjadi lebih teratur. Lokasi sebuah terminal harus sesuai dengan rencana tata ruang wilayah (RTRW) dan sesuai dengan kebutuhan masyarakat Di kecamatan Banyumanik hanya memiliki sub terminal atau terminal bantu yang berfungsi sebagai tempat transit dan pergantian moda. Demand yang tinggi terhadap fasilitas transportasi tersebut tidak sebanding dengan supply fasilitas terminal yang tersedia sehingga mengakibatkan timbulnya titik-titik baru yang digunakan masyarakat untuk menunggu angkutan yaitu terminal bayangan. Terminal bayangan ini muncul karena adanya demand yang tinggi dari mayarakat banyumanik terhadap kebutuhan sarana transportasi dan efisiensi waktu. Ketidakseimbangan antara demand dan supply ini mengakibatkan berbagai dampak makro maupun mikro terhadap lalu lintas maupun jaringan angkutan di Kecamatan Banyumanik dan kota Semarang
Clinical risk factors and atherosclerotic plaque extent to define risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry.
AimsIn patients without obstructive coronary artery disease (CAD), we examined the prognostic value of risk factors and atherosclerotic extent.Methods and resultsPatients from the long-term CONFIRM registry without prior CAD and without obstructive (≥50%) stenosis were included. Within the groups of normal coronary computed tomography angiography (CCTA) (N = 1849) and non-obstructive CAD (N = 1698), the prognostic value of traditional clinical risk factors and atherosclerotic extent (segment involvement score, SIS) was assessed with Cox models. Major adverse cardiac events (MACE) were defined as all-cause mortality, non-fatal myocardial infarction, or late revascularization. In total, 3547 patients were included (age 57.9 ± 12.1 years, 57.8% male), experiencing 460 MACE during 5.4 years of follow-up. Age, body mass index, hypertension, and diabetes were the clinical variables associated with increased MACE risk, but the magnitude of risk was higher for CCTA defined atherosclerotic extent; adjusted hazard ratio (HR) for SIS >5 was 3.4 (95% confidence interval [CI] 2.3-4.9) while HR for diabetes and hypertension were 1.7 (95% CI 1.3-2.2) and 1.4 (95% CI 1.1-1.7), respectively. Exclusion of revascularization as endpoint did not modify the results. In normal CCTA, presence of ≥1 traditional risk factors did not worsen prognosis (log-rank P = 0.248), while it did in non-obstructive CAD (log-rank P = 0.025). Adjusted for SIS, hypertension and diabetes predicted MACE risk in non-obstructive CAD, while diabetes did not increase risk in absence of CAD (P-interaction = 0.004).ConclusionAmong patients without obstructive CAD, the extent of CAD provides more prognostic information for MACE than traditional cardiovascular risk factors. An interaction was observed between risk factors and CAD burden, suggesting synergistic effects of both
The compositional and evolutionary logic of metabolism
Metabolism displays striking and robust regularities in the forms of
modularity and hierarchy, whose composition may be compactly described. This
renders metabolic architecture comprehensible as a system, and suggests the
order in which layers of that system emerged. Metabolism also serves as the
foundation in other hierarchies, at least up to cellular integration including
bioenergetics and molecular replication, and trophic ecology. The
recapitulation of patterns first seen in metabolism, in these higher levels,
suggests metabolism as a source of causation or constraint on many forms of
organization in the biosphere.
We identify as modules widely reused subsets of chemicals, reactions, or
functions, each with a conserved internal structure. At the small molecule
substrate level, module boundaries are generally associated with the most
complex reaction mechanisms and the most conserved enzymes. Cofactors form a
structurally and functionally distinctive control layer over the small-molecule
substrate. Complex cofactors are often used at module boundaries of the
substrate level, while simpler ones participate in widely used reactions.
Cofactor functions thus act as "keys" that incorporate classes of organic
reactions within biochemistry.
The same modules that organize the compositional diversity of metabolism are
argued to have governed long-term evolution. Early evolution of core
metabolism, especially carbon-fixation, appears to have required few
innovations among a small number of conserved modules, to produce adaptations
to simple biogeochemical changes of environment. We demonstrate these features
of metabolism at several levels of hierarchy, beginning with the small-molecule
substrate and network architecture, continuing with cofactors and key conserved
reactions, and culminating in the aggregation of multiple diverse physical and
biochemical processes in cells.Comment: 56 pages, 28 figure
E-POD investigations of turbulent premixed flame dynamics approaching lean blow-out conditions
Influence of canopy fruit location on morphological, histochemical and biochemical changes in two oil olive cultivars
The influence of different irradiance conditions was evaluated under natural solar radiation by comparing well-exposed (in) and shaded fruit (out) in canopies of olive trees (Olea europaea L). Over a 2-year period, from 50 days after full bloom up to harvest time, “in” and “out” olive samples of two genotypes (“Frantoio Millennio” and “Coratina 5/19”) were periodically collected. Morphological, histochemical, and biochemical analysis were performed to study the changes on fruit morphometric traits, oil body accumulation, and b-glucosidase enzyme activity. Some parameters were modified by shading inside the canopy in which the proportion of incident photosynthetically active radiation intercepted by the crop was 47%. Shaded fruits developed at slow rate and were characterized by late darkgoing time, reduced size, with a tendency toward oblong shape. The rapid histochemical procedure proposed to estimate the oil body accumulation during fruit ripening showed that a reduced irradiance caused a decrease in oil body density. The canopy position influenced, in a different way, the b-glucosidase activity in relation to the fruit-ripening stage in both genotypes. These findings indicate that providing an adequate and uniform lighting of the olive canopy by careful choices of orchard management practices can be a key factor for several yield components
- …
