202 research outputs found
Recommended from our members
Large Acceptance Muon Storage Rings for Neutrino Production: Lattice Design
The possibility of achieving the high muon fluxes suggested in recent work on muon colliders has revived interest in the idea of using muon storage rings for neutrino production. Through proper design of the lattice, a significant fraction of the stored muons can be converted into an intense, low-divergence beam of neutrinos. This work examines the incorporation of a long, high-beta straight section for production of neutrino beams into a lattice which is otherwise optimized for transverse and longitudinal admittance. The ring must be able to accept a very large emittance and large momentum spread muon beam
Neutrino-nucleus interaction rates at a low-energy beta-beam facility
We compute the neutrino detection rates to be expected at a low-energy
beta-beam facility. We consider various nuclei as neutrino detectors and
compare the case of a small versus large storage ring.Comment: 6 pages, 3 figure
The acceleration and storage of radioactive ions for a neutrino factory
The term beta-beam has been coined for the production of a pure beam of
electron neutrinos or their antiparticles through the decay of radioactive ions
circulating in a storage ring. This concept requires radioactive ions to be
accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino
source itself consists of a storage ring for this energy range, with long
straight sections in line with the experiment(s). Such a decay ring does not
exist at CERN today, nor does a high-intensity proton source for the production
of the radioactive ions. Nevertheless, the existing CERN accelerator
infrastructure could be used as this would still represent an important saving
for a beta-beam facility. This paper outlines the first study, while some of
the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200
, and the neutrino mass hierarchy at a double baseline Li/B -Beam
We consider a -Beam facility where Li and B ions are
accelerated at , accumulated in a 10 Km storage ring and let
decay, so as to produce intense and beams. These beams
illuminate two iron detectors located at Km and
Km, respectively. The physics potential of this setup is analysed in full
detail as a function of the flux. We find that, for the highest flux ( ion decays per year per baseline), the sensitivity to
reaches ; the sign of
the atmospheric mass difference can be identified, regardless of the true
hierarchy, for ; and, CP-violation
can be discovered in 70% of the -parameter space for , having some sensitivity to CP-violation down to
for .Comment: 35 pages, 20 figures. Minor changes, matches the published versio
Fake CPT Violation in Disappearance Neutrino Oscillations
We make an analysis of the fake CPT-violating asymmetries between the
survival probabilities of neutrinos and antineutrinos, induced by the
terrestrial matter effects, in three different scenarios of long-baseline
neutrino oscillation experiments with L=730 km, L=2100 km and L=3200 km. In
particular, the dependence of those asymmetries on the Dirac-type CP-violating
phase of the lepton flavor mixing matrix is examined.Comment: RevTex 8 pages (including 3 PS figures). To be publishe
What about a beta-beam facility for low energy neutrinos?
A novel method to produce neutrino beams has recently been proposed : the
beta-beams. This method consists in using the beta-decay of boosted radioactive
nuclei to obtain an intense, collimated and pure neutrino beam. Here we propose
to exploit the beta-beam concept to produce neutrino beams of low energy. We
discuss the applications of such a facility as well as its importance for
different domains of physics. We focus, in particular, on neutrino-nucleus
interaction studies of interest for various open issues in astrophysics,
nuclear and particle physics. We suggest possible sites for a low energy
beta-beam facility.Comment: 4 pages, 1 figur
Design of a 2.2 GeV Accumulator and Compressor for a Neutrino Factory
The proton driver for a neutrino factory must provide megawatts of beam power at a few GeV, with nonosecond long bunches each containing more than 1x1012 protons. Such beam powers are within reach of a high-energy linac, but the required time structure cannot be provided without accumulation and compression. The option of a linac-based 2.2 GeV proton driver has been studied at CERN, taking into account the space charge and stability problems which make beam accumulation and bunch compression difficult at such a low-energy. A solution featuring two rings of approximately 1 km circumference has been worked out and is described in this paper. The subjects deserving further investigation are outlined
A Slow-Cycling Proton Driver for a Neutrino Factory
An 8 Hz proton driver for a neutrino factory of 4 MW beam power and an energy of 25-30 GeV is under study at CERN, in parallel with a similar investigation using a 2.2 GeV high-energy linac and an accumulator plus a compressor ring cycling at 75 Hz. At RAL, synchrotron drivers with final energies of 5 and 15 GeV cycling at 50 and 25 Hz, respectively, are being studied. With these four scenarios, one hopes to cope with all possible constraints emerging from the studies of the pion production target and the muon rotation and cooling system. The high beam energy of this scenario requires less proton current and could inject into the SPS above transition and upgrade LHC and fixed target physics. Its 440 kW booster would upgrade ISOLDE.The main problems of the driver synchrotron are: the requirement of about 4 MV RF voltage at 10 MHz for acceleration and adiabatic bunch compression to the required r.m.s length of 1 ns; the sensitivity of the compression to the impedance of the vacuum chamber and to non-linearities of the momentum compaction of the high-gt lattice
Topical Review on "Beta-beams"
Neutrino physics is traversing an exciting period, after the important
discovery that neutrinos are massive particles, that has implications from
high-energy physics to cosmology. A new method for the production of intense
and pure neutrino beams has been proposed recently: the ``beta-beam''. It
exploits boosted radioactive ions decaying through beta-decay. This novel
concept has been the starting point for a new possible future facility. Its
main goal is to address the crucial issue of the existence of CP violation in
the lepton sector. Here we review the status and the recent developments with
beta-beams. We discuss the original, the medium and high-energy scenarios as
well as mono-chromatic neutrino beams produced through ion electron-capture.
The issue of the degeneracies is mentioned. An overview of low energy
beta-beams is also presented. These beams can be used to perform experiments of
interest for nuclear structure, for the study of fundamental interactions and
for nuclear astrophysics.Comment: Topical Review for Journal of Physics G: Nuclear and Particle
Physics, published version, minor corrections, references adde
- …
