1,964 research outputs found
Wide-field mid-infrared and millimetre imaging of the high-redshift radio galaxy, 4C41.17
We present deep 350- and 1200-micron imaging of the region around 4C41.17 --
one of the most distant (z = 3.792) and luminous known radio galaxies --
obtained with the Submillimeter High Angular Resolution Camera (SHARC-II) and
the Max Planck Millimeter Bolometer Array (MAMBO). The radio galaxy is robustly
detected at 350- and 1200-micron, as are two nearby 850-micron-selected
galaxies; a third 850-micron source is detected at 350-micron and coincides
with a ~ 2-sigma feature in the 1200-micron map. Further away from the radio
galaxy an additional nine sources are detected at 1200-micron, bringing the
total number of detected (sub)millimeter selected galaxies (SMGs) in this field
to 14. Using radio images from the Very Large Array (VLA) and Spitzer
mid-infrared (mid-IR) data, we find statistically robust radio and/or 24-micron
counterparts to eight of the 14 SMGs in the field around 4C41.17. Follow-up
spectroscopy with Keck/LRIS has yielded redshifts for three of the eight
robustly identified SMGs, placing them in the redshift range 0.5 < z < 2.7,
i.e. well below that of 4C41.17. We infer photometric redshifts for a further
four sources using their 1.6-micron (rest-frame) stellar feature as probed by
the IRAC bands; only one of them is likely to be at the same redshift as
4C41.17. Thus at least four, and as many as seven, of the SMGs within the
4C41.17 field are physically unrelated to the radio galaxy. With the redshift
information at hand we are able to constrain the observed over-densities of
SMGs within radial bins stretching to R=50 and 100" (~ 0.4 and ~ 0.8Mpc at z ~
3.8) from the radio galaxy to ~ 5x and ~ 2x that of the field, dropping off to
the background value at R=150". [Abridged]Comment: 20 pages, 9 figures, accepted for publication in MNRA
Recommended from our members
Generation of Porous Structures Using Fused Deposition
The Fused Deposition Modeling process uses hardware and software machine-level
language that are very similar to that of a pen-plotter. Consequently, the·use of patterns with
poly-lines as basic geometric features, instead of the current method based on filled polygons
(monolithic models), can increase its efficiency.
In the current study, various toolpath planning methods have been developed to fabricate
porous structures. Computational domain decomposition methods can be applied to the physical
or to slice-level domains to generate structured and unstructured grids. Also, textures can be
created using periodic tiling of the layer with unit cells (squares, honeycombs, etc). Methods
'based on curves include fractal space filling curves and.change of effective road width Within a
layer or within a continuous curve. Individual phases can also be placed in binary compositions.
In present investigation, a custom software has been developed and implemented to
generate build files (SML) and slice files (SSL) for the above-mentioned structures, demonstrating the efficient control ofthe size, shape, and distribution ofporosity.Mechanical Engineerin
Bioassay-guided isolation of allelochemicals from Avena sativa L.: allelopathic potential of flavone C-glycosides
Quasars in the MAMBO blank field survey
Our MAMBO 1.2 mm blank field imaging survey of ~0.75 sqd has uncovered four
unusually bright sources, with flux densities between 10 and 90 mJy, all
located in the Abell 2125 field. The three brightest are flat spectrum radio
sources with bright optical and X-ray counterparts. Their mm and radio flux
densities are variable on timescales of months. Their X-ray luminosities
classify them as quasars. The faintest of the four mm bright sources appears to
be a bright, radio-quiet starburst at z~3, similar to the sources seen at lower
flux densities in the MAMBO and SCUBA surveys. It may also host a mildly
obscured AGN of quasar-like X-ray luminosity. The three non-thermal mm sources
imply an areal density of flat spectrum radio sources higher by at least 7
compared with that expected from an extrapolation of the lower frequency radio
number counts.Comment: 8 pages, 7 figures. Accepted for publication by A&
First detection of [CII]158um at high redshift: vigorous star formation in the early universe
We report the detection of the 2P_3/2 -> 2P_1/2 fine-structure line of C+ at
157.74 micron in SDSSJ114816.64+525150.3 (hereafter J1148+5251), the most
distant known quasar, at z=6.42, using the IRAM 30-meter telescope. This is the
first detection of the [CII] line at high redshift, and also the first
detection in a Hyperluminous Infrared Galaxy (L_FIR > 10^13 Lsun). The [CII]
line is detected at a significance level of 8 sigma and has a luminosity of 4.4
x 10^9 Lsun. The L_[CII]/L_FIR ratio is 2 x 10^-4, about an order of magnitude
smaller than observed in local normal galaxies and similar to the ratio
observed in local Ultraluminous Infrared Galaxies. The [CII] line luminosity
indicates that the host galaxy of this quasar is undergoing an intense burst of
star formation with an estimated rate of ~3000 Msun/yr. The detection of C+ in
SDSS J1148+5251 suggests a significant enrichment of metals at z ~ 6 (age of
the universe ~870 Myr), although the data are consistent with a reduced carbon
to oxygen ratio as expected from chemical evolutionary models of the early
phases of galaxy formation.Comment: 5 pages, 2 figures, accepted by A&A Letter
Confirmation of the VeLLO L1148-IRS: Star Formation at very low (Column) Density
We report the detection of a compact (of order 5 arcsec; about 1800 AU
projected size) CO outflow from L1148-IRS. This confirms that this Spitzer
source is physically associated with the nearby (about 325 pc) L1148 dense
core. Radiative transfer modeling suggests an internal luminosity of 0.08 to
0.13 L_sun. This validates L1148-IRS as a Very Low Luminosity Object (VeLLO; L
< 0.1 L_sun). The L1148 dense core has unusually low densities and column
densities for a star-forming core. It is difficult to understand how L1148-IRS
might have formed under these conditions. Independent of the exact final mass
of this VeLLO (which is likely < 0.24 M_sun), L1148-IRS and similar VeLLOs
might hold some clues about the isolated formation of brown dwarfs.Comment: accepted to MNRAS; Figure 1 degraded to permit submissio
Comparison on sealer penetration into dentinal tubules using self-adjusting file cleaning- shaping-irrigation system and conventional endodontic needle irrigation
Properties of mm galaxies: Constraints from K-band blank fields
We have used the IRAM Plateau de Bure mm interferometer to locate with
subarcsecond accuracy the dust emission of three of the brightest 1.2mm sources
in the NTT Deep Field (NDF) selected from our 1.2mm MAMBO survey at the IRAM
30m telescope. We combine these results with deep B to K imaging and VLA
interferometry. Strikingly, none of the three accurately located mm galaxies
MMJ120546-0741.5, MMJ120539-0745.4, and MMJ120517-0743.1 has a K-band
counterpart down to the faint limit of K>21.9. This implies that these three
galaxies are either extremely obscured and/or are at very high redshifts
(z>~4). We combine our results with literature data for 11 more (sub)mm
galaxies that are identified with similar reliability. In terms of their K-band
properties, the sample divides into three roughly equal groups: (i) undetected
to K~22, (ii) detected in the near-infrared but not the optical and (iii)
detected in the optical with the possibility of optical follow-up spectroscopy.
We find a trend in this sample between near-infrared to submm and submm to
radio spectral indices, which in comparison to spectral energy distributions
(SEDs) of low redshift infrared luminous galaxies suggests that the most
plausible primary factor causing the extreme near-infrared faintness of our
objects is their high redshift. We show that the near-infrared to radio SEDs of
the sample are inconsistent with SEDs that resemble local far-infrared cool
galaxies with moderate luminosities, which were proposed in some models of the
submm sky. We briefly discuss the implications of the results for our
understanding of galaxy formation.Comment: aastex, 5 figures. Accepted by Ap
Radio and millimeter properties of Ly emitters in the COSMOS field: limits on radio AGN, submm galaxies, and dust obscuration
We present observations at 1.4 and 250 GHz of the Ly
emitters (LAE) in the COSMOS field found by Murayama et al.. At 1.4 GHz there
are 99 LAEs in the lower noise regions of the radio field. We do not detect any
individual source down to 3 limits of Jy beam at 1.4
GHz, nor do we detect a source in a stacking analysis, to a 2 limit of
Jy beam. At 250 GHz we do not detect any of the 10 LAEs that are
located within the central regions of the COSMOS field covered by MAMBO () to a typical 2 limit of mJy. The radio data
imply that there are no low luminosity radio AGN with W Hz in the LAE sample. The radio and millimeter observations
also rule out any highly obscured, extreme starbursts in the sample, ie. any
galaxies with massive star formation rates M year in
the full sample (based on the radio data), or 500 M year for the
10% of the LAE sample that fall in the central MAMBO field. The stacking
analysis implies an upper limit to the mean massive star formation rate of
M year.Comment: 11 pages AAStex format 3 figures. ApJ COSMOS Special Issue. Changes:
Added 'Note added in proof' to reflect nine new sources in the LAE sampl
- …
