570 research outputs found
Evaporating Spray in Supersonic Streams Including Turbulence Effects
Evaporating spray plays an important role in spray combustion processes. This paper describes the development of a new finite-conductivity evaporation model, based on the two-temperature film theory, for two-phase numerical simulation using Eulerian-Lagrangian method. The model is a natural extension of the T-blob/T-TAB atomization/spray model which supplies the turbulence characteristics for estimating effective thermal diffusivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating sprays. High speed cross flow spray results indicate the effectiveness of the T-blob/T-TAB model and point to the needed improvements in high speed evaporating spray modeling
Investigation of Compressibility Effect for Aeropropulsive Shear Flows
Rocket Based Combined Cycle (RBCC) engines operate within a wide range of Mach numbers and altitudes. Fundamental fluid dynamic mechanisms involve complex choking, mass entrainment, stream mixing and wall interactions. The Propulsion Research Center at the University of Alabama in Huntsville is involved in an on- going experimental and numerical modeling study of non-axisymmetric ejector-based combined cycle propulsion systems. This paper attempts to address the modeling issues related to mixing, shear layer/wall interaction in a supersonic Strutjet/ejector flow field. Reynolds Averaged Navier-Stokes (RANS) solutions incorporating turbulence models are sought and compared to experimental measurements to characterize detailed flow dynamics. The effect of compressibility on fluids mixing and wall interactions were investigated using an existing CFD methodology. The compressibility correction to conventional incompressible two- equation models is found to be necessary for the supersonic mixing aspect of the ejector flows based on 2-D simulation results. 3-D strut-base flows involving flow separations were also investigated
Numerical Modeling of Turbulence Effects within an Evaporating Droplet in Atomizing Sprays
A new approach to account for finite thermal conductivity and turbulence effects within atomizing liquid sprays is presented in this paper. The model is an extension of the T-blob and T-TAB atomization/spray model of Trinh and Chen (2005). This finite conductivity model is based on the two-temperature film theory, where the turbulence characteristics of the droplet are used to estimate the effective thermal diffhsivity within the droplet phase. Both one-way and two-way coupled calculations were performed to investigate the performance of this model. The current evaporation model is incorporated into the T-blob atomization model of Trinh and Chen (2005) and implemented in an existing CFD Eulerian-Lagrangian two-way coupling numerical scheme. Validation studies were carried out by comparing with available evaporating atomization spray experimental data in terms of jet penetration, temperature field, and droplet SMD distribution within the spray. Validation results indicate the superiority of the finite-conductivity model in low speed parallel flow evaporating spray
Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications
There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications
Omega Production in pp Collisions
A model-independent irreducible tensor formalism which has been developed
earlier to analyze measurements of , is
extended to present a theoretical discussion of
and the polarization of in . The recent
measurement of unpolarized differential cross section for is
analyzed using this theoretical formalism.Comment: 5 pages (double column), no figures, uses revtex
Physical and chemical conditions in methanol maser selected hot-cores and UCHII regions
We present the results of a targeted 3-mm spectral line survey towards the
eighty-three 6.67 GHz methanol maser selected star forming clumps observed by
Purcell et al. 2006. In addition to the previously reported measurements of
HCO+ (1 - 0), H13CO+ (1 - 0), and CH3CN (5 - 4) & (6 -5), we used the Mopra
antenna to detect emission lines of N2H+ (1 - 0), HCN (1 - 0) and HNC (1 - 0)
towards 82/83 clumps (99 per cent), and CH3OH (2 - 1) towards 78/83 clumps (94
per cent). The molecular line data have been used to derive virial and LTE
masses, rotational temperatures and chemical abundances in the clumps, and
these properties have been compared between sub-samples associated with
different indicators of evolution. The greatest differences are found between
clumps associated with 8.6 GHz radio emission, indicating the presence of an
Ultra-Compact HII region, and `isolated' masers (without associated radio
emission), and between clumps exhibiting CH3CN emission and those without. In
particular, thermal CH3OH is found to be brighter and more abundant in
Ultra-Compact HII (UCHII) regions and in sources with detected CH3CN, and may
constitute a crude molecular clock in single dish observations. Clumps
associated with 8.6 GHz radio emission tend to be more massive and more
luminous than clumps without radio emission. This is likely because the most
massive clumps evolve so rapidly that a Hyper-Compact HII or UCHII region is
the first visible tracer of star-formation. The gas-mass to sub-mm/IR
luminosity relation for the combined sample was found to be L proportional to
M**0.68, considerably shallower than expected for massive main-sequence stars
Glucose level decline precedes dementia in elderly African Americans with diabetes
INTRODUCTION:
High blood glucose levels may be responsible for the increased risk for dementia in diabetic patients.
METHODS:
A secondary data analysis merging electronic medical records (EMRs) with data collected from the Indianapolis-Ibadan Dementia project (IIDP). Of the enrolled 4105 African Americans, 3778 were identified in the EMR. Study endpoints were dementia, mild cognitive impairment (MCI), or normal cognition. Repeated serum glucose measurements were used as the outcome variables.
RESULTS:
Diabetic participants who developed incident dementia had a significant decrease in serum glucose levels in the years preceding the diagnosis compared to the participants with normal cognition (P = .0002). They also had significantly higher glucose levels up to 9 years before the dementia diagnosis (P = .0367).
DISCUSSION:
High glucose levels followed by a decline occurring years before diagnosis in African American participants with diabetes may represent a powerful presymptomatic metabolic indicator of dementia
Unified approach to photo and electro-production of mesons with arbitrary spins
A new approach to identify the independent amplitudes along with their
partial wave multipole expansions, for photo and electro-production is
suggested,which is generally applicable to mesons with arbitrary spin-parity.
These amplitudes facilitate direct identification of different resonance
contributions.Comment: 11 page
A recurrent p.Arg92Trp variant in steroidogenic factor-1 (NR5A1) can act as a molecular switch in human sex development
Cell lineages of the early human gonad commit to one of the two mutually antagonistic organogenetic fates, the testis or the ovary. Some individuals with a 46,XX karyotype develop testes or ovotestes (testicular or ovotesticular disorder of sex development; TDSD/OTDSD), due to the presence of the testis-determining gene, SRY Other rare complex syndromic forms of TDSD/OTDSD are associated with mutations in pro-ovarian genes that repress testis development (e.g. WNT4); however, the genetic cause of the more common non-syndromic forms is unknown. Steroidogenic factor-1 (known as NR5A1) is a key regulator of reproductive development and function. Loss-of-function changes in NR5A1 in 46,XY individuals are associated with a spectrum of phenotypes in humans ranging from a lack of testis formation to male infertility. Mutations in NR5A1 in 46,XX women are associated with primary ovarian insufficiency, which includes a lack of ovary formation, primary and secondary amenorrhoea as well as early menopause. Here, we show that a specific recurrent heterozygous missense mutation (p.Arg92Trp) in the accessory DNA-binding region of NR5A1 is associated with variable degree of testis development in 46,XX children and adults from four unrelated families. Remarkably, in one family a sibling raised as a girl and carrying this NR5A1 mutation was found to have a 46,XY karyotype with partial testicular dysgenesis. These unique findings highlight how a specific variant in a developmental transcription factor can switch organ fate from the ovary to testis in mammals and represents the first missense mutation causing isolated, non-syndromic 46,XX testicular/ovotesticular DSD in humans
- …
