2,429 research outputs found
Energy spectrum of strongly correlated particles in quantum dots
The ground state and the excitation spectrum of strongly correlated electrons
in quantum dots are investigated. An analytical solution is constructed by
exact diagonalization of the Hamiltonian in terms of the -particle
eigenmodes.Comment: 10 pages, 10 figures, to appear in Journal of Physics: Conf. Serie
On the Coulomb-dipole transition in mesoscopic classical and quantum electron-hole bilayers
We study the Coulomb-to-dipole transition which occurs when the separation
of an electron-hole bilayer system is varied with respect to the
characteristic in-layer distances. An analysis of the classical ground state
configurations for harmonically confined clusters with reveals that
the energetically most favorable state can differ from that of two-dimensional
pure dipole or Coulomb systems. Performing a normal mode analysis for the N=19
cluster it is found that the lowest mode frequencies exhibit drastic changes
when is varied. Furthermore, we present quantum-mechanical ground states
for N=6, 10 and 12 spin-polarized electrons and holes. We compute the
single-particle energies and orbitals in self-consistent Hartree-Fock
approximation over a broad range of layer separations and coupling strengths
between the limits of the ideal Fermi gas and the Wigner crystal
The H.E.S.S. multi-messenger program
Based on fundamental particle physics processes like the production and
subsequent decay of pions in interactions of high-energy particles, close
connections exist between the acceleration sites of high-energy cosmic rays and
the emission of high-energy gamma rays and high-energy neutrinos. In most cases
these connections provide both spatial and temporal correlations of the
different emitted particles. The combination of the complementary information
provided by these messengers allows to lift ambiguities in the interpretation
of the data and enables novel and highly sensitive analyses. In this
contribution the H.E.S.S. multi-messenger program is introduced and described.
The current core of this newly installed program is the combination of
high-energy neutrinos and high-energy gamma rays. The search for gamma-ray
emission following gravitational wave triggers is also discussed. Furthermore,
the existing program for following triggers in the electromagnetic regime was
extended by the search for gamma-ray emission from Fast Radio Bursts (FRBs). An
overview over current and planned analyses is given and recent results are
presented.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherland
Influence of spin fluctuations near the Mott transition: a DMFT study
Dynamics of magnetic moments near the Mott metal-insulator transition is
investigated by a combined slave-rotor and Dynamical Mean-Field Theory solution
of the Hubbard model with additional fully-frustrated random Heisenberg
couplings. In the paramagnetic Mott state, the spinon decomposition allows to
generate a Sachdev-Ye spin liquid in place of the collection of independent
local moments that typically occurs in the absence of magnetic correlations.
Cooling down into the spin-liquid phase, the onset of deviations from pure
Curie behavior in the spin susceptibility is found to be correlated to the
temperature scale at which the Mott transition lines experience a marked
bending. We also demonstrate a weakening of the effective exchange energy upon
approaching the Mott boundary from the Heisenberg limit, due to quantum
fluctuations associated to zero and doubly occupied sites.Comment: 6 pages, 3 figures. V3 was largely expande
Charge separation in donor-C60 complexes with real-time Green's functions: The importance of nonlocal correlations
We use the Nonequilibrium Green's Function (NEGF) method to perform real-time
simulations of the ultrafast electron dynamics of photoexcited donor-C60
complexes modeled by a Pariser-Parr-Pople Hamiltonian. The NEGF results are
compared to mean-field Hartree-Fock (HF) calculations to disentangle the role
of correlations. Initial benchmarking against numerically highly accurate
time-dependent Density Matrix Renormalization Group calculations verifies the
accuracy of NEGF. We then find that charge-transfer (CT) excitons partially
decay into charge separated (CS) states if dynamical non-local correlation
corrections are included. This CS process occurs in ~10 fs after
photoexcitation. In contrast, the probability of exciton recombination is
almost 100% in HF simulations. These results are largely unaffected by nuclear
vibrations; the latter become however essential whenever level misalignment
hinders the CT process. The robust nature of our findings indicate that
ultrafast CS driven by correlation-induced decoherence may occur in many
organic nanoscale systems, but it will only be correctly predicted by
theoretical treatments that include time-nonlocal correlations.Comment: 9 pages, 6 figures + supplemental information (4 pages)
The H.E.S.S. central data acquisition system
The High Energy Stereoscopic System (H.E.S.S.) is a system of Imaging
Atmospheric Cherenkov Telescopes (IACTs) located in the Khomas Highland in
Namibia. It measures cosmic gamma rays of very high energies (VHE; >100 GeV)
using the Earth's atmosphere as a calorimeter. The H.E.S.S. Array entered Phase
II in September 2012 with the inauguration of a fifth telescope that is larger
and more complex than the other four. This paper will give an overview of the
current H.E.S.S. central data acquisition (DAQ) system with particular emphasis
on the upgrades made to integrate the fifth telescope into the array. At first,
the various requirements for the central DAQ are discussed then the general
design principles employed to fulfil these requirements are described. Finally,
the performance, stability and reliability of the H.E.S.S. central DAQ are
presented. One of the major accomplishments is that less than 0.8% of
observation time has been lost due to central DAQ problems since 2009.Comment: 17 pages, 8 figures, published in Astroparticle Physic
Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.
The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met
- …
