123 research outputs found
A Visual Sensor Network for Parking Lot Occupancy Detection in Smart Cities
Technology is quickly revolutionizing our everyday lives, helping us to perform complex tasks. The Internet of Things (IoT) paradigm is getting more and more popular and is key to the development of Smart Cities. Among all the applications of IoT in the context of Smart Cities, real-time parking lot occupancy detection recently gained a lot of attention. Solutions based on computer vision yield good performance in terms of accuracy and are deployable on top of visual sensor networks. Since the problem of detecting vacant parking lots is usually distributed over multiple cameras, adhoc algorithms for content acquisition and transmission are to be devised. A traditional paradigm consists in acquiring and encoding images or videos and transmitting them to a central controller, which is responsible for analyzing such content. A novel paradigm, which moves part of the analysis to sensing devices, is quickly becoming popular. We propose a system for distributed parking lot occupancy detection based on the latter paradigm, showing that onboard analysis and transmission of simple features yield better performance with respect to the traditional paradigm in terms of the overall rate-energy-accuracy performance
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271.
The question of whether tumorigenic cancer stem cells exist in human melanomas has arisen in the last few years. Here we show that in melanomas, tumour stem cells (MTSCs, for melanoma tumour stem cells) can be isolated prospectively as a highly enriched CD271(+) MTSC population using a process that maximizes viable cell transplantation. The tumours sampled in this study were taken from a broad spectrum of sites and stages. High-viability cells isolated by fluorescence-activated cell sorting and re-suspended in a matrigel vehicle were implanted into T-, B- and natural-killer-deficient Rag2(-/-)gammac(-/-) mice. The CD271(+) subset of cells was the tumour-initiating population in 90% (nine out of ten) of melanomas tested. Transplantation of isolated CD271(+) melanoma cells into engrafted human skin or bone in Rag2(-/-)gammac(-/-) mice resulted in melanoma; however, melanoma did not develop after transplantation of isolated CD271(-) cells. We also show that in mice, tumours derived from transplanted human CD271(+) melanoma cells were capable of metastatsis in vivo. CD271(+) melanoma cells lacked expression of TYR, MART1 and MAGE in 86%, 69% and 68% of melanoma patients, respectively, which helps to explain why T-cell therapies directed at these antigens usually result in only temporary tumour shrinkage
Distribution of the spotted-wing drosophila (Drosophila suzukii) in the north-eastern part of the Carpathian lowlands
L
Human neural crest cells display molecular and phenotypic hallmarks of stem cells
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells
Standard (8 weeks) vs long (12 weeks) timing to minimally-invasive surgery after NeoAdjuvant Chemoradiotherapy for rectal cancer: A multicenter randomized controlled parallel group trial (TiMiSNAR)
Background: The optimal timing of surgery in relation to chemoradiation is still controversial. Retrospective analysis has demonstrated in the recent decades that the regression of adenocarcinoma can be slow and not complete until after several months. More recently, increasing pathologic Complete Response rates have been demonstrated to be correlated with longer time interval. The purpose of the trial is to demonstrate if delayed timing of surgery after neoadjuvant chemoradiotherapy actually affects pathologic Complete Response and reflects on disease-free survival and overall survival rather than standard timing. Methods: The trial is a multicenter, prospective, randomized controlled, unblinded, parallel-group trial comparing standard and delayed surgery after neoadjuvant chemoradiotherapy for the curative treatment of rectal cancer. Three-hundred and forty patients will be randomized on an equal basis to either robotic-assisted/standard laparoscopic rectal cancer surgery after 8 weeks or robotic-assisted/standard laparoscopic rectal cancer surgery after 12 weeks. Discussion: To date, it is well-know that pathologic Complete Response is associated with excellent prognosis and an overall survival of 90%. In the Lyon trial the rate of pCR or near pathologic Complete Response increased from 10.3 to 26% and in retrospective studies the increase rate was about 23-30%. These results may be explained on the relationship between radiation therapy and tumor regression: DNA damage occurs during irradiation, but cellular lysis occurs within the next weeks. Study results, whether confirmed that performing surgery after 12 weeks from neoadjuvant treatment is advantageous from a technical and oncological point of view, may change the current pathway of the treatment in those patient suffering from rectal cancer. Trial registration: ClinicalTrials.gov NCT3465982
Standard (8 weeks) vs long (12 weeks) timing to minimally-invasive surgery after NeoAdjuvant Chemoradiotherapy for rectal cancer: a multicenter randomized controlled parallel group trial (TiMiSNAR)
BACKGROUND:
The optimal timing of surgery in relation to chemoradiation is still controversial. Retrospective analysis has demonstrated in the recent decades that the regression of adenocarcinoma can be slow and not complete until after several months. More recently, increasing pathologic Complete Response rates have been demonstrated to be correlated with longer time interval. The purpose of the trial is to demonstrate if delayed timing of surgery after neoadjuvant chemoradiotherapy actually affects pathologic Complete Response and reflects on disease-free survival and overall survival rather than standard timing.
METHODS:
The trial is a multicenter, prospective, randomized controlled, unblinded, parallel-group trial comparing standard and delayed surgery after neoadjuvant chemoradiotherapy for the curative treatment of rectal cancer. Three-hundred and forty patients will be randomized on an equal basis to either robotic-assisted/standard laparoscopic rectal cancer surgery after 8\u2009weeks or robotic-assisted/standard laparoscopic rectal cancer surgery after 12\u2009weeks.
DISCUSSION:
To date, it is well-know that pathologic Complete Response is associated with excellent prognosis and an overall survival of 90%. In the Lyon trial the rate of pCR or near pathologic Complete Response increased from 10.3 to 26% and in retrospective studies the increase rate was about 23-30%. These results may be explained on the relationship between radiation therapy and tumor regression: DNA damage occurs during irradiation, but cellular lysis occurs within the next weeks. Study results, whether confirmed that performing surgery after 12\u2009weeks from neoadjuvant treatment is advantageous from a technical and oncological point of view, may change the current pathway of the treatment in those patient suffering from rectal cancer
- …
