512 research outputs found
Growing condensate in two-dimensional turbulence
We report a numerical study, supplemented by phenomenological explanations,
of ``energy condensation'' in forced 2D turbulence in a biperiodic box.
Condensation is a finite size effect which occurs after the standard inverse
cascade reaches the size of the system. It leads to emergence of a coherent
vortex dipole. We show that the time growth of the dipole is self-similar, and
it contains most of the injected energy, thus resulting in an energy spectrum
which is markedly steeper than the standard one. Once the coherent
component is subtracted, however, the remaining fluctuations have a spectrum
close to . The fluctuations decay slowly as the coherent part grows.Comment: 4 pages, 4 figures. This version includes some additional
phenomenological explanations of the results, additional references and
improved figure
Controlling spatiotemporal chaos in oscillatory reaction-diffusion systems by time-delay autosynchronization
Diffusion-induced turbulence in spatially extended oscillatory media near a
supercritical Hopf bifurcation can be controlled by applying global time-delay
autosynchronization. We consider the complex Ginzburg-Landau equation in the
Benjamin-Feir unstable regime and analytically investigate the stability of
uniform oscillations depending on the feedback parameters. We show that a
noninvasive stabilization of uniform oscillations is not possible in this type
of systems. The synchronization diagram in the plane spanned by the feedback
parameters is derived. Numerical simulations confirm the analytical results and
give additional information on the spatiotemporal dynamics of the system close
to complete synchronization.Comment: 19 pages, 10 figures submitted to Physica
Universal features of cell polarization processes
Cell polarization plays a central role in the development of complex
organisms. It has been recently shown that cell polarization may follow from
the proximity to a phase separation instability in a bistable network of
chemical reactions. An example which has been thoroughly studied is the
formation of signaling domains during eukaryotic chemotaxis. In this case, the
process of domain growth may be described by the use of a constrained
time-dependent Landau-Ginzburg equation, admitting scale-invariant solutions
{\textit{\`a la}} Lifshitz and Slyozov. The constraint results here from a
mechanism of fast cycling of molecules between a cytosolic, inactive state and
a membrane-bound, active state, which dynamically tunes the chemical potential
for membrane binding to a value corresponding to the coexistence of different
phases on the cell membrane. We provide here a universal description of this
process both in the presence and absence of a gradient in the external
activation field. Universal power laws are derived for the time needed for the
cell to polarize in a chemotactic gradient, and for the value of the smallest
detectable gradient. We also describe a concrete realization of our scheme
based on the analysis of available biochemical and biophysical data.Comment: Submitted to Journal of Statistical Mechanics -Theory and Experiment
The acceleration and storage of radioactive ions for a neutrino factory
The term beta-beam has been coined for the production of a pure beam of
electron neutrinos or their antiparticles through the decay of radioactive ions
circulating in a storage ring. This concept requires radioactive ions to be
accelerated to a Lorentz gamma of 150 for 6He and 60 for 18Ne. The neutrino
source itself consists of a storage ring for this energy range, with long
straight sections in line with the experiment(s). Such a decay ring does not
exist at CERN today, nor does a high-intensity proton source for the production
of the radioactive ions. Nevertheless, the existing CERN accelerator
infrastructure could be used as this would still represent an important saving
for a beta-beam facility. This paper outlines the first study, while some of
the more speculative ideas will need further investigations.Comment: Accepted for publication in proceedings of Nufact02, London, 200
Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film
Environmental molecular beam experiments are used to examine water
interactions with liquid methanol films at temperatures from 170 K to 190 K. We
find that water molecules with 0.32 eV incident kinetic energy are efficiently
trapped by the liquid methanol. The scattering process is characterized by an
efficient loss of energy to surface modes with a minor component of the
incident beam that is inelastically scattered. Thermal desorption of water
molecules has a well characterized Arrhenius form with an activation energy of
0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3)
s^(-1). We also observe a temperature dependent incorporation of incident water
into the methanol layer. The implication for fundamental studies and
environmental applications is that even an alcohol as simple as methanol can
exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure
'Bring on the dancing horses!': Ambivalence and class obsession within British media reports of the dressage at London 2012
Cutaneous adverse events associated with disease-modifying treatment in multiple sclerosis: A systematic review
Glatiramer acetate and interferon-beta are approved first-line disease-modifying treatments (DMTs) for multiple sclerosis (MS). DMTs can be associated with cutaneous adverse events, which may influence treatment adherence and patient quality of life. In this systematic review, we aimed to provide an overview of the clinical spectrum and the incidence of skin reactions associated with DMTs. A systematic literature search was performed up to May 2011 in Medline, Embase, and Cochrane databases without applying restrictions in study design, language, or publishing date. Eligible for inclusion were articles describing any skin reaction related to DMTs in MS patients. Selection of articles and data extraction were performed by two authors independently. One hundred and six articles were included, of which 41 (39%) were randomized controlled trials or cohort studies reporting incidences of mainly local injection-site reactions. A large number of patients had experienced some form of localized injection-site reaction: up to 90% for those using subcutaneous formulations and up to 33% for those using an intramuscular formulation. Sixty-five case-reports involving 106 MS patients described a wide spectrum of cutaneous adverse events, the most frequently reported being lipoatrophy, cutaneous necrosis and ulcers, and various immune-mediated inflammatory skin diseases. DMTs for MS are frequently associated with local injection-site reactions and a wide spectrum of generalized cutaneous adverse events, in particular, the subcutaneous formulations. Although some of the skin reactions may be severe and persistent, most of them are mild and do not require cessation of DMT
Risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review of the literature
Objectives: To estimate the risk of miscarriage after amniocentesis or chorionic villus sampling (CVS) based on a systematic review of the literature.
Methods: A search of MEDLINE, EMBASE, and The Cochrane Library (2000-2017) was carried out to identify studies reporting complications following CVS or amniocentesis. The inclusion criteria for the systematic review were studies reporting results from large controlled studies (n1,000 invasive procedures) and those reporting data for pregnancy loss prior to 24 weeks’ gestation. Data for cases that had invasive procedure and controls were inputted in contingency tables and risk of miscarriage was estimated for each study. Summary statistics were calculated after taking into account the weighting for each study included in the systematic review. Procedure-related risk of miscarriage was estimated as a weighted risk difference from the summary statistics for cases and controls.
Results: The electronic search from the databases yielded 2,465 potential citations of which 2,431 were excluded, leaving 34 studies for full-text review. The final review included 10 studies for amniocentesis and 6 studies for CVS, which were used to estimate risk of miscarriage in pregnancies that had an invasive procedure and the control pregnancies that did not. The procedure-related risk of miscarriage following amniocentesis was 0.35% (95% confidence interval [CI]: 0.07 to 0.63) and that following CVS was 0.35% (95%C CI: -0.31 to 1.00).
Conclusion: The procedure-related risks of miscarriage following amniocentesis and CVS are lower than currently quoted to women
Control of spatiotemporal chaos in catalytic CO oxidation by laser-induced pacemakers
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer–Eiswirth–Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible
- …
