847 research outputs found
Macroscopically ordered state in exciton system
Macroscopically ordered arrays of vortices in quantum liquids, such as
superconductors, He-II, and atom Bose-Einstein Condensates (BEC), demonstrate
macroscopic coherence in flowing superfluids [1-4]. Despite of the rich variety
of systems where quantum liquids reveal macroscopic ordering, experimental
observation of a macroscopically ordered electronic state in semiconductors has
remained a challenging unexplored problem. A system of excitons is a promising
candidate for the realization of macroscopic ordering in a quantum liquid in
semiconductors. An exciton is a bound pair of an electron and a hole. At low
densities, it is a Bose quasi-particle. At low temperatures, of the order of a
few Kelvins, excitons can form a quantum liquid, i.e., a statistically
degenerate Bose gas and eventually BEC [5-9]. Here, we report the experimental
observation of a macroscopically ordered state in an exciton system.Comment: 5 pages (2 col) including 4 figure
Charge transport and phase transition in exciton rings
The macroscopic exciton rings observed in the photoluminescence (PL) patterns
of excitons in coupled quantum wells (CQWs) are explained by a series of
experiments and a theory based on the idea of carrier imbalance, transport and
recombination. The rings are found to be a source of cold excitons with
temperature close to that of the lattice. We explored states of excitons in the
ring over a range of temperatures down to 380 mK. These studies reveal a sharp,
albeit continuous, second order phase transition to a low-temperature ordered
exciton state, characterized by ring fragmentation into a periodic array of
aggregates. An instability at the onset of degeneracy in the cold exciton
system, due to stimulated exciton formation, is proposed as the transition
mechanism.Comment: 8 pages including 4 figure
Photon-energy dissipation caused by an external electric circuit in "virtual" photo-excitation processes
We consider generation of an electrical pulse by an optical pulse in the
``virtual excitation'' regime. The electronic system, which is any
electro-optic material including a quantum well structure biased by a dc
electric field, is assumed to be coupled to an external circuit. It is found
that the photon frequency is subject to an extra red shift in addition to the
usual self-phase modulation, whereas the photon number is conserved. The Joule
energy consumed in the external circuit is supplied only from the extra red
shift.Comment: 4 pages, 1 fugur
Photonic crystals of coated metallic spheres
It is shown that simple face-centered-cubic (fcc) structures of both metallic
and coated metallic spheres are ideal candidates to achieve a tunable complete
photonic bandgap (CPBG) for optical wavelengths using currently available
experimental techniques. For coated microspheres with the coating width to
plasma wavelength ratio and the coating and host
refractive indices and , respectively, between 1 and 1.47, one can
always find a sphere radius such that the relative gap width (gap
width to the midgap frequency ratio) is larger than 5% and, in some cases,
can exceed 9%. Using different coatings and supporting liquids, the width
and midgap frequency of a CPBG can be tuned considerably.Comment: 14 pages, plain latex, 3 ps figures, to appear in Europhys. Lett. For
more info on this subject see
http://www.amolf.nl/research/photonic_materials_theory/moroz/moroz.htm
Parity forbidden excitations of Sr2CuO2Cl2 revealed by optical third-harmonic spectroscopy
We present the first study of nonlinear optical third harmonic generation in
the strongly correlated charge-transfer insulator Sr2CuO2Cl2. For fundamental
excitation in the near-infrared, the THG spectrum reveals a strongly resonant
response for photon energies near 0.7 eV. Polarization analysis reveals this
novel resonance to be only partially accounted for by three-photon excitation
to the optical charge-transfer exciton, and indicates that an even-parity
excitation at 2 eV, with a_1g symmetry, participates in the third harmonic
susceptibility.Comment: Requires RevTeX v4.0beta
Sum-over-states vs quasiparticle pictures of coherent correlation spectroscopy of excitons in semiconductors; femtosecond analogues of multidimensional NMR
Two-dimensional correlation spectroscopy (2DCS) based on the nonlinear
optical response of excitons to sequences of ultrafast pulses, has the
potential to provide some unique insights into carrier dynamics in
semiconductors. The most prominent feature of 2DCS, cross peaks, can best be
understood using a sum-over-states picture involving the many-body eigenstates.
However, the optical response of semiconductors is usually calculated by
solving truncated equations of motion for dynamical variables, which result in
a quasiparticle picture. In this work we derive Green's function expressions
for the four wave mixing signals generated in various phase-matching directions
and use them to establish the connection between the two pictures. The formal
connection with Frenkel excitons (hard-core bosons) and vibrational excitons
(soft-core bosons) is pointed out.Comment: Accepted to Phys. Rev.
Radiative corrections to the excitonic molecule state in GaAs microcavities
The optical properties of excitonic molecules (XXs) in GaAs-based quantum
well microcavities (MCs) are studied, both theoretically and experimentally. We
show that the radiative corrections to the XX state, the Lamb shift
and radiative width , are
large, about of the molecule binding energy , and
definitely cannot be neglected. The optics of excitonic molecules is dominated
by the in-plane resonant dissociation of the molecules into outgoing
1-mode and 0-mode cavity polaritons. The later decay channel,
``excitonic molecule 0-mode polariton + 0-mode
polariton'', deals with the short-wavelength MC polaritons invisible in
standard optical experiments, i.e., refers to ``hidden'' optics of
microcavities. By using transient four-wave mixing and pump-probe
spectroscopies, we infer that the radiative width, associated with excitonic
molecules of the binding energy meV, is
meV in the microcavities and
meV in a reference GaAs single quantum
well (QW). We show that for our high-quality quasi-two-dimensional
nanostructures the limit, relevant to the XX states, holds at
temperatures below 10 K, and that the bipolariton model of excitonic molecules
explains quantitatively and self-consistently the measured XX radiative widths.
We also find and characterize two critical points in the dependence of the
radiative corrections against the microcavity detuning, and propose to use the
critical points for high-precision measurements of the molecule bindingenergy
and microcavity Rabi splitting.Comment: 16 pages, 11 figures, accepted for publication in Phys. Rev.
Rational expectations and the paradox of policy-relevant natural experiments
Policy experiments using large microeconomic datasets have recently gained ground in macro- economics. Imposing rational expectations, we examine robustness of evidence derived from ideal natural experiments applied to atomistic agents in dynamic settings. Paradoxically, once experi-mental evidence is viewed as su¢ ciently clean to use, it then becomes contaminated byex post endo- geneity: Measured responses depend upon priors and the objective function into which evidence is fed. Moreover, agentsípolicy beliefs become endogenously correlated with their causal parameters, severely clouding inference, e.g. sign reversals and non-invertibility may obtain. Treatment-control di§erences are contaminated for non-quadratic adjustment costs. Constructively, we illustrate how inference can be corrected accounting for feedback and highlight factors mitigating contamination
Theory of exciton-exciton correlation in nonlinear optical response
We present a systematic theory of Coulomb interaction effects in the
nonlinear optical processes in semiconductors using a perturbation series in
the exciting laser field. The third-order dynamical response consists of
phase-space filling correction, mean-field exciton-exciton interaction, and
two-exciton correlation effects expressed as a force-force correlation
function. The theory provides a unified description of effects of bound and
unbound biexcitons, including memory-effects beyond the Markovian
approximation. Approximations for the correlation function are presented.Comment: RevTex, 35 pages, 10 PostScript figs, shorter version submitted to
Physical Review
Polariton propagation in weak confinement quantum wells
Exciton-polariton propagation in a quantum well, under centre-of-mass
quantization, is computed by a variational self-consistent microscopic theory.
The Wannier exciton envelope functions basis set is given by the simple
analytical model of ref. [1], based on pure states of the centre-of-mass wave
vector, free from fitting parameters and "ad hoc" (the so called additional
boundary conditions-ABCs) assumptions. In the present paper, the former
analytical model is implemented in order to reproduce the centre-of-mass
quantization in a large range of quantum well thicknesses (5a_B < L < inf.).
The role of the dynamical transition layer at the well/barrier interfaces is
discussed at variance of the classical Pekar's dead-layer and ABCs. The Wannier
exciton eigenstates are computed, and compared with various theoretical models
with different degrees of accuracy. Exciton-polariton transmission spectra in
large quantum wells (L>> a_B) are computed and compared with experimental
results of Schneider et al.\cite{Schneider} in high quality GaAs samples. The
sound agreement between theory and experiment allows to unambiguously assign
the exciton-polariton dips of the transmission spectrum to the pure states of
the Wannier exciton center-of-mass quantization.Comment: 15 pages, 15 figures; will appear in Phys.Rev.
- …
