2,282 research outputs found
Electronic mean free path in as-produced and purified single-wall carbon nanotubes
The effect of purification on room temperature electronic transport
properties of single-wall carbon nanotubes (SWNT) was studied by submerging
samples into liquid mercury. The conductance plots of purified SWNTs showed
plateaus, indicating weak dependence of the electrical resistance on the length
of the tube connecting the electrodes, providing evidence of quasi-ballistic
conduction in SWNTs. The electronic mean free path of the purified SWNTs
reached a few microns, which is longer than that of the as-produced SWNTs, and
which is consistent with the calculation based on the scattering by acoustic
phonons
On board Processor and Processing Strategies for Next Generation Reconfigurable Satellite Payloads
Today, the increasing demand in higher data rates necessitates new methods as well as higher flexibility for satellite telecommunication payloads in order to address a variety of applications and customers. This paper presents one of these processing strategies that is applicable to today’s processing satellite payloads aiming to meet those demands. For this purpose, a two-tier filter bank is designed as part of a digital onboard processor, which first divides the spectrum at the output of the ADC into a number of sub-bands extracting all the stacked channels in the digital domain. Following the analysis section of the first tier of operations, the extracted channels go under a secondary channelisation process to obtain much finer granularity of 31.25 kHz or 50 kHz depending on the communication standard used for data transmission. The implementation of the channeliser was delivered on a bit-true simulation model and the input and the output of the channelisers were compared and evaluated both in the time and frequency domains
Anomalous Aharonov--Bohm gap oscillations in carbon nanotubes
The gap oscillations caused by a magnetic flux penetrating a carbon nanotube
represent one of the most spectacular observation of the Aharonov-Bohm effect
at the nano--scale. Our understanding of this effect is, however, based on the
assumption that the electrons are strictly confined on the tube surface, on
trajectories that are not modified by curvature effects. Using an ab-initio
approach based on Density Functional Theory we show that this assumption fails
at the nano-scale inducing important corrections to the physics of the
Aharonov-Bohm effect. Curvature effects and electronic density spilled out of
the nanotube surface are shown to break the periodicity of the gap
oscillations. We predict the key phenomenological features of this anomalous
Aharonov-Bohm effect in semi-conductive and metallic tubes and the existence of
a large metallic phase in the low flux regime of Multi-walled nanotubes, also
suggesting possible experiments to validate our results.Comment: 7 figure
Recommended from our members
Transcriptional down-regulation of ccr5 in a subset of HIV+ controllers and their family members.
HIV +Elite and Viremic controllers (EC/VCs) are able to control virus infection, perhaps because of host genetic determinants. We identified 16% (21 of 131) EC/VCs with CD4 +T cells with resistance specific to R5-tropic HIV, reversed after introduction of ccr5. R5 resistance was not observed in macrophages and depended upon the method of T cell activation. CD4 +T cells of these EC/VCs had lower ccr2 and ccr5 RNA levels, reduced CCR2 and CCR5 cell-surface expression, and decreased levels of secreted chemokines. T cells had no changes in chemokine receptor mRNA half-life but instead had lower levels of active transcription of ccr2 and ccr5, despite having more accessible chromatin by ATAC-seq. Other nearby genes were also down-regulated, over a region of ~500 kb on chromosome 3p21. This same R5 resistance phenotype was observed in family members of an index VC, also associated with ccr2/ccr5 down-regulation, suggesting that the phenotype is heritable
Field-portable optofluidic plasmonic biosensor for wide-field and label-free monitoring of molecular interactions
We demonstrate a field-portable optofluidic plasmonic sensing device, weighing 40 g and 7.5 cm in height, which merges plasmonic microarrays with dual-wavelength lensfree on-chip imaging for real-time monitoring of protein binding kinetics
Lensfree optofluidic plasmonic sensor for real-time and label-free monitoring of molecular binding events over a wide field-of-view
We demonstrate a high-throughput biosensing device that utilizes microfluidics based plasmonic microarrays incorporated with dual-color on-chip imaging toward real-time and label-free monitoring of biomolecular interactions over a wide field-of-view of >20 mm^2. Weighing 40 grams with 8.8 cm in height, this biosensor utilizes an opto-electronic imager chip to record the diffraction patterns of plasmonic nanoapertures embedded within microfluidic channels, enabling real-time analyte exchange. This plasmonic chip is simultaneously illuminated by two different light-emitting-diodes that are spectrally located at the right and left sides of the plasmonic resonance mode, yielding two different diffraction patterns for each nanoaperture array. Refractive index changes of the medium surrounding the near-field of the nanostructures, e.g., due to molecular binding events, induce a frequency shift in the plasmonic modes of the nanoaperture array, causing a signal enhancement in one of the diffraction patterns while suppressing the other. Based on ratiometric analysis of these diffraction images acquired at the detector-array, we demonstrate the proof-of-concept of this biosensor by monitoring in real-time biomolecular interactions of protein A/G with immunoglobulin G (IgG) antibody. For high-throughput on-chip fabrication of these biosensors, we also introduce a deep ultra-violet lithography technique to simultaneously pattern thousands of plasmonic arrays in a cost-effective manner
Donor-Acceptor Oligorotaxanes Made to Order
Five donor–acceptor oligorotaxanes made up of dumbbells composed of tetraethylene glycol chains, interspersed
with three and five 1,5-dioxynaphthalene units, and terminated by 2,6-diisopropylphenoxy stoppers, have been prepared by the threading of discrete numbers of cyclobis(paraquat-p-phenylene) rings, followed by a
kinetically controlled stoppering protocol that relies on click chemistry. The well-known copper(I)-catalyzed
alkyne–azide cycloaddition between azide functions placed at the ends of the polyether chains and alkyne-bearing
stopper precursors was employed during the final kinetically controlled template-directed synthesis of the five oligorotaxanes, which were characterized subsequently by ^1H NMR spectroscopy at low temperature (233 K) in
deuterated acetonitrile. The secondary structures, as well as the conformations, of the five oligorotaxanes were unraveled by spectroscopic comparison with the dumbbell and ring components. By focusing attention on the changes in
chemical shifts of some key probe protons, obtained from a wide range of low-temperature spectra, a picture emerges of a high degree of folding within the thread protons of the dumbbells of four of the five oligorotaxanes—the fifth oligorotaxane represents a control compound in effect—
brought about by a combination of C-H···O and π–π stacking interactions between the p-electron-deficient bipyridinium
units in the rings and the π-electron-rich 1,5-dioxynaphthalene units and polyether chains in the
dumbbells. The secondary structures of a foldamer-like nature have received further support from a solid-state superstructure of a related [3]pseudorotaxane and density functional calculations performed thereon
Quantum Particles Constrained on Cylindrical Surfaces with Non-constant Diameter
We present a theoretical formulation of the one-electron problem constrained
on the surface of a cylindrical tubule with varying diameter. Because of the
cylindrical symmetry, we may reduce the problem to a one-dimensional equation
for each angular momentum quantum number along the cylindrical axis. The
geometrical properties of the surface determine the electronic structures
through the geometry dependent term in the equation. Magnetic fields parallel
to the axis can readily be incorporated. Our formulation is applied to simple
examples such as the catenoid and the sinusoidal tubules. The existence of
bound states as well as the band structures, which are induced geometrically,
for these surfaces are shown. To show that the electronic structures can be
altered significantly by applying a magnetic field, Aharonov-Bohm effects in
these examples are demonstrated.Comment: 7 pages, 7 figures, submitted to J. Phys. Soc. Jp
- …
