6,466 research outputs found

    Dissipation through spin Coulomb drag in electronic spin dynamics

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in parabolic quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect by means of inelastic light scattering

    Dissipation through spin Coulomb drag in electronic spin transport and optical excitations

    Get PDF
    Spin Coulomb drag (SCD) constitutes an intrinsic source of dissipation for spin currents in metals and semiconductors. We discuss the power loss due to SCD in potential spintronics devices and analyze in detail the associated damping of collective spin-density excitations. It is found that SCD contributes substantially to the linewidth of intersubband spin plasmons in semiconductor quantum wells, which suggests the possibility of a purely optical quantitative measurement of the SCD effect in a parabolic well through inelastic light scattering

    Intersubband spin-orbit coupling and spin splitting in symmetric quantum wells

    Get PDF
    In semiconductors with inversion asymmetry, spin-orbit coupling gives rise to the well-known Dresselhaus and Rashba effects. If one considers quantum wells with two or more conduction subbands, an additional, intersubband-induced spin-orbit term appears whose strength is comparable to the Rashba coupling, and which remains finite for symmetric structures. We show that the conduction band spin splitting due to this intersubband spin-orbit coupling term is negligible for typical III-V quantum wells

    Feasibility of approximating spatial and local entanglement in long-range interacting systems using the extended Hubbard model

    Full text link
    We investigate the extended Hubbard model as an approximation to the local and spatial entanglement of a one-dimensional chain of nanostructures where the particles interact via a long range interaction represented by a `soft' Coulomb potential. In the process we design a protocol to calculate the particle-particle spatial entanglement for the Hubbard model and show that, in striking contrast with the loss of spatial degrees of freedom, the predictions are reasonably accurate. We also compare results for the local entanglement with previous results found using a contact interaction (PRA, 81 (2010) 052321) and show that while the extended Hubbard model recovers a better agreement with the entanglement of a long-range interacting system, there remain realistic parameter regions where it fails to predict the quantitative and qualitative behaviour of the entanglement in the nanostructure system.Comment: 6 pages, 5 figures and 1 table; added results with correlated hopping term; accepted by EP

    Timing the millisecond pulsars in 47 Tucanae

    Get PDF
    In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.Comment: 17 pages, 11 included figures, accepted for publication in MNRA

    Distributed Timing and Localization (DiGiTaL)

    Get PDF
    The Distributed Timing and Localization (DiGiTaL) system provides nano satellite formations with unprecedented,centimeter-level navigation accuracy in real time and nanosecond-level time synchronization. This is achieved through the integration of a multi-constellation Global Navigation Satellite System (GNSS) receiver, a Chip-Scale Atomic Clock (CSAC), and a dedicated Inter-Satellite Link (ISL). In comparison, traditional single spacecraft GNSS navigation solutions are accurate only to the meter-level due to the sole usage of coarse pseudo-range measurements. To meet the strict requirements of future miniaturized distributed space systems, DiGiTaL uses powerful error-cancelling combinations of raw carrier-phase measurements which are exchanged between the swarming nano satellites through a decentralized network. A reduced-dynamics estimation architecture on board each individual nano satellite processes the resulting millimeter-level noise measurements to reconstruct the fullformation state with high accuracy

    The Double Pulsar System J0737-3039: Modulation of the radio emission from B by radiation from A

    Get PDF
    We have analyzed single pulses from PSR J0737-3039B, the 2.8-s pulsar in the recently discovered double pulsar system, using data taken with the Green Bank Telescope at 820 and 1400 MHz. We report the detection of features similar to drifting subpulses, detectable over only a fraction of the pulse window, with a fluctuation frequency of 0.196 cycles/period. This is exactly the beat frequency between the periods of the two pulsars. In addition, the drifting features have a separation within a given pulse of 23 ms, equal to the pulse period of A. These features are therefore due to the direct influence of PSR J0737-3039A's 44-Hz electromagnetic radiation on PSR J0737-3039B's magnetosphere. We only detect them over a small range of orbital phases, when the radiation from the recycled pulsar PSR J0737-3039A meets our line of sight to PSR J0737-3039B from the side.Comment: 4 pages, 5 figures, Accepted by ApJ Letters 11 August 200

    A Double-Pulsar System - A Rare Laboratory for Relativistic Gravity and Plasma Physics

    Full text link
    The clock-like properties of pulsars moving in the gravitational fields of their unseen neutron-star companions have allowed unique tests of general relativity and provided evidence for gravitational radiation. We report here the detection of the 2.8-sec pulsar J0737-3039B as the companion to the 23-ms pulsar J0737-3039A in a highly-relativistic double-neutron-star system, allowing unprecedented tests of fundamental gravitational physics. We observe a short eclipse of J0737-3039A by J0737-3039B and orbital modulation of the flux density and pulse shape of J0737-3039B, probably due to the influence of J0737-3039A's energy flux upon its magnetosphere. These effects will allow us to probe magneto-ionic properties of a pulsar magnetosphere.Comment: 21 pages, 5 figures, Science, in pres
    corecore