37,087 research outputs found

    WHEN THE !%$? HITS THE LAND: IMPLICATIONS FOR US AGRICULTURE AND ENVIRONMENT WHEN LAND APPLICATION OF MANURE IS CONSTRAINED

    Get PDF
    Confined animal production in the U.S. and its associated discharge of manure nutrients into area waters is considered a leading contributor to current water quality impairments. A common option to mitigate these impairments is to limit land application of manure. This paper evaluates the implications of alternative land application constraints for U.S. agriculture and the environment at the regional and sector level. The results suggest that when these constraints are particularly binding, due to minimal acceptance of manure as a substitute for commercial fertilizer, potentially large and unanticipated changes in returns to agricultural production and water quality may occur. Furthermore, we find that some of the cost of meeting the land application constraints will be passed on to consumers through higher prices and to a portion of rural economies through lower production rates and labor expenditures.Environmental Economics and Policy, Livestock Production/Industries,

    A Carrot-and-Stick Approach to Environmental Improvement: Marrying Agri-Environmental Payments and Water Quality Regulations

    Get PDF
    Agri-environmental programs, such as the Environmental Quality Incentives Program, provide payments to livestock and crop producers to generate broadly defined environmental benefits and to help them comply with federal water quality regulations, such as those that require manure nutrients generated on large animal feeding operations to be spread on cropland at no greater than agronomic rates. We couch these policy options in terms of agri-environmental "carrots" and regulatory "sticks," respectively. The U.S. agricultural sector is likely to respond to these policies in a variety of ways. Simulation analysis suggests that meeting nutrient standards would result in decreased levels of animal production, increased prices for livestock and poultry products, increased levels of crop production, and water quality improvements. However, estimated impacts are not homogeneous across regions. In regions with relatively less cropland per ton of manure produced, the impacts of these policies are more pronounced.Environmental Economics and Policy,

    On Extended Electroweak Symmetries

    Full text link
    We discuss extensions of the Standard Model through extending the electroweak gauge symmetry. An extended electroweak symmetry requires a list of extra fermionic and scalar states. The former is necessary to maintain cancellation of gauge anomalies, and largely fixed by the symmetry embedding itself. The latter is usually considered quite arbitrary, so long as a vacuum structure admitting the symmetry breaking is allowed. Anomaly cancellation may be used to link the three families of quarks and leptons together, given a perspective on flavor physics. It is illustrated lately that the kind of models may also have the so-called little Higgs mechanism incorporated. This more or less fixes the scalar sector and take care of the hierarchy problem, making such models of extended electroweak symmetries quite appealing candidates as TeV scale effective field theories.Comment: 1+8 pages of latex with ws-procs9x6.cls; talk presented at Coral Gables Conference 200

    CP Violation from a Higher Dimensional Model

    Get PDF
    It is shown that Randall-Sundrum model has the EDM term which violates the CP-symmetry. The comparison with the case of Kaluza-Klein theory is done. The chiral property, localization, anomaly phenomena are examined. We evaluate the bulk quantum effect using the method of the induced effective action. This is a new origin of the CP-violation.Comment: 15pages, Proc. of Int. Workshop on "Neutrino Masses and Mixings"(Dec.17-19,2006,Univ.of Shizuoka,Japan

    A New Experiment to Study Hyperon CP Violation and the Charmonium System

    Full text link
    Fermilab operates the world's most intense antiproton source, now exclusively dedicated to serving the needs of the Tevatron Collider. The anticipated 2009 shutdown of the Tevatron presents the opportunity for a world-leading low- and medium-energy antiproton program. We summarize the status of the Fermilab antiproton facility and review physics topics for which a future experiment could make the world's best measurements.Comment: 16 pages, 3 figures, to appear in Proceedings of CTP symposium on Supersymmetry at LHC: Theoretical and Experimental Perspectives, The British University in Egypt, Cairo, Egypt, 11-14 March 200

    Inequalities for low-energy symmetric nuclear matter

    Full text link
    Using effective field theory we prove inequalities for the correlations of two-nucleon operators in low-energy symmetric nuclear matter. For physical values of operator coefficients in the effective Lagrangian, the S = 1, I = 0 channel correlations must have the lowest energy and longest correlation length in the two-nucleon sector. This result is valid at nonzero density and temperature.Comment: 9 page

    The Delta-Delta Intermediate State in 1S0 Nucleon-Nucleon Scattering From Effective Field Theory

    Full text link
    We examine the role of the Delta-Delta intermediate state in low energy NN scattering using effective field theory. Theories both with and without pions are discussed. They are regulated with dimensional regularization and MSbar subtraction. We find that the leading effects of the Delta-Delta state can be absorbed by a redefinition of the contact terms in a theory with nucleons only. It does not remove the requirement of a higher dimension operator to reproduce data out to moderate momentum. The explicit decoupling of the Delta-Delta state is shown for the theory without pions.Comment: 16 pages, 3 figures, uses harvma

    An alternative to the plasma emission model: Particle-In-Cell, self-consistent electromagnetic wave emission simulations of solar type III radio bursts

    Full text link
    1.5D PIC, relativistic, fully electromagnetic (EM) simulations are used to model EM wave emission generation in the context of solar type III radio bursts. The model studies generation of EM waves by a super-thermal, hot beam of electrons injected into a plasma thread that contains uniform longitudinal magnetic field and a parabolic density gradient. In effect, a single magnetic line connecting Sun to earth is considered, for which several cases are studied. (i) We find that the physical system without a beam is stable and only low amplitude level EM drift waves (noise) are excited. (ii) The beam injection direction is controlled by setting either longitudinal or oblique electron initial drift speed, i.e. by setting the beam pitch angle. In the case of zero pitch angle, the beam excites only electrostatic, standing waves, oscillating at plasma frequency, in the beam injection spatial location, and only low level EM drift wave noise is also generated. (iii) In the case of oblique beam pitch angles, again electrostatic waves with same properties are excited. However, now the beam also generates EM waves with the properties commensurate to type III radio bursts. The latter is evidenced by the wavelet analysis of transverse electric field component, which shows that as the beam moves to the regions of lower density, frequency of the EM waves drops accordingly. (iv) When the density gradient is removed, electron beam with an oblique pitch angle still generates the EM radiation. However, in the latter case no frequency decrease is seen. Within the limitations of the model, the study presents the first attempt to produce simulated dynamical spectrum of type III radio bursts in fully kinetic plasma model. The latter is based on 1.5D non-zero pitch angle (non-gyrotropic) electron beam, that is an alternative to the plasma emission classical mechanism.Comment: Physics of Plasmas, in press, May 2011 issue (final accepted version

    Little Higgs Model Completed with a Chiral Fermionic Sector

    Full text link
    The implementation of the little Higgs mechanism to solve the hierarchy problem provides an interesting guiding principle to build particle physics models beyond the electroweak scale. Most model building works, however, pay not much attention to the fermionic sector. Through a case example, we illustrate how a complete and consistent fermionic sector of the TeV effective field theory may actually be largely dictated by the gauge structure of the model. The completed fermionic sector has specific flavor physics structure, and many phenomenological constraints on the model can thus be obtained beyond gauge, Higgs, and top physics. We take a first look on some of the quark sector constraints.Comment: 14 revtex pages with no figure, largely a re-written version of hep-ph/0307250 with elaboration on flavor sector FCNC constraints; accepted for publication in Phys.Rev.
    corecore