42,044 research outputs found

    Multi-fuel rotary engine for general aviation aircraft

    Get PDF
    Design studies of advanced multifuel general aviation and commuter aircraft rotary stratified charge engines are summarized. Conceptual design studies were performed at two levels of technology, on advanced general aviation engines sized to provide 186/250 shaft kW/hp under cruise conditions at 7620 (25000 m/ft) altitude. A follow on study extended the results to larger (2500 hp max.) engine sizes suitable for applications such as commuter transports and helicopters. The study engine designs were derived from relevant engine development background including both prior and recent engine test results using direct injected unthrottled rotary engine technology. Aircraft studies, using these resultant growth engines, define anticipated system effects of the performance and power density improvements for both single engine and twin engine airplanes. The calculated results indicate superior system performance and 27 to 33 percent fuel economy improvement for the rotary engine airplanes as compared to equivalent airframe concept designs with current baseline engines. The research and technology activities required to attain the projected engine performance levels are also discussed

    Diffractive jet production in a simple model with applications to HERA

    Full text link
    In diffractive jet production, two high energy hadrons A and B collide and produce high transverse momentum jets, while hadron A is diffractively scattered. Ingelman and Schlein predicted this phenomenon. In their model, part of the longitudinal momentum transferred from hadron A is delivered to the jet system, part is lost. Lossless diffractive jet production, in which all of this longitudinal momentum is delivered to the jet system, has been discussed by Collins, Frankfurt, and Strikman. We study the structure of lossless diffractive jet production in a simple model. The model suggests that the phenomenon can be probed experimentally at HERA, with A being a proton and B being a bremsstrahlung photon with virtuality Q2Q^2. Lossless events should be present for small Q2Q^2, but not for Q2Q^2 larger than 1/RP21/R_{\rm P}^2, where RPR_{\rm P} is a characteristic size of the pomeron.Comment: 23 pages, REVTeX 3.0 with 8 postscript figures compressed with uufiles, OITS 536 and AZPH-TH/94-0

    Random Hamiltonian in thermal equilibrium

    Get PDF
    A framework for the investigation of disordered quantum systems in thermal equilibrium is proposed. The approach is based on a dynamical model--which consists of a combination of a double-bracket gradient flow and a uniform Brownian fluctuation--that `equilibrates' the Hamiltonian into a canonical distribution. The resulting equilibrium state is used to calculate quenched and annealed averages of quantum observables.Comment: 8 pages, 4 figures. To appear in DICE 2008 conference proceeding

    Lagrange-Poincare field equations

    Get PDF
    The Lagrange-Poincare equations of classical mechanics are cast into a field theoretic context together with their associated constrained variational principle. An integrability/reconstruction condition is established that relates solutions of the original problem with those of the reduced problem. The Kelvin-Noether theorem is formulated in this context. Applications to the isoperimetric problem, the Skyrme model for meson interaction, metamorphosis image dynamics, and molecular strands illustrate various aspects of the theory.Comment: Submitted to Journal of Geometry and Physics, 45 pages, 1 figur

    Oxide-apertured microcavity single-photon emitting diode

    Full text link
    We have developed a microcavity single-photon source based on a single quantum dot within a planar cavity in which wet-oxidation of a high-aluminium content layer provides lateral confinement of both the photonic mode and the injection current. Lateral confinement of the optical mode in optically pumped structures produces a strong enhancement of the radiative decay rate. Using microcavity structures with doped contact layers, we demonstrate a single-photon emitting diode where current may be injected into a single dot

    High angular resolution observation of the Sunyaev-Zel'dovich effect in the massive z=0.83 cluster ClJ0152-1357

    Full text link
    X-ray observations of galaxy clusters at high redshift (z>0.5) indicate that they are more morphologically complex and less virialized than those at low-redshift. We present the first subarcmin resolution at 18 GHz observations of the Sunyaev-Zel'dovich (SZ) effect for ClJ0152-1357 using the Australia Telescope Compact Array. ClJ0152-1357 is a massive cluster at redshift z=0.83 and has a complex structure including several merging subclumps which have been studied at optical, X-ray, and radio wavelengths. Our high-resolution observations indicate a clear displacement of the maximum SZ effect from the peak of X-ray emission for the most massive sub-clump. This result shows that the cluster gas within the cluster substructures is not virialised in ClJ0152-1357 and we suggest that it is still recovering from a recent merger event. A similar offset of the SZ effect has been recently seen in the `bullet cluster' by Malu et al. This non-equilibrium situation implies that high resolution observations are necessary to investigate galaxy cluster evolution, and to extract cosmological constraints from a comparison of the SZ effect and X-ray signals.Comment: 5 pages, 4 figures, submitted to ApJ

    Higher twists in polarized DIS and the size of the constituent quark

    Full text link
    The spontaneous breaking of chiral symmetry implies the presence of a short-distance scale in the QCD vacuum, which phenomenologically may be associated with the "size" of the constituent quark, rho ~ 0.3 fm. We discuss the role of this scale in the matrix elements of the twist-4 and 3 quark-gluon operators determining the leading power (1/Q^2-) corrections to the moments of the nucleon spin structure functions. We argue that the flavor-nonsinglet twist-4 matrix element, f_2^{u - d}, has a sizable negative value of the order rho^{-2}, due to the presence of sea quarks with virtualities ~ rho^{-2} in the proton wave function. The twist-3 matrix element, d_2, is not related to the scale rho^{-2}. Our arguments support the results of previous calculations of the matrix elements in the instanton vacuum model. We show that this qualitative picture is in agreement with the phenomenological higher-twist correction extracted from an NLO QCD fit to the world data on g_1^p and g_1^n, which include recent data from the Jefferson Lab Hall A and COMPASS experiments. We comment on the implications of the short-distance scale rho for quark-hadron duality and the x-dependence of higher-twist contributions.Comment: 8 pages, 4 figure

    An Infinite Dimensional Symmetry Algebra in String Theory

    Full text link
    Symmetry transformations of the space-time fields of string theory are generated by certain similarity transformations of the stress-tensor of the associated conformal field theories. This observation is complicated by the fact that, as we explain, many of the operators we habitually use in string theory (such as vertices and currents) have ill-defined commutators. However, we identify an infinite-dimensional subalgebra whose commutators are not singular, and explicitly calculate its structure constants. This constitutes a subalgebra of the gauge symmetry of string theory, although it may act on auxiliary as well as propagating fields. We term this object a {\it weighted tensor algebra}, and, while it appears to be a distant cousin of the WW-algebras, it has not, to our knowledge, appeared in the literature before.Comment: 14 pages, Plain TeX, report RU93-8, CTP-TAMU-2/94, CERN-TH.7022/9

    The Stability of an Isotropic Cosmological Singularity in Higher-Order Gravity

    Full text link
    We study the stability of the isotropic vacuum Friedmann universe in gravity theories with higher-order curvature terms of the form (RabRab)n(R_{ab}R^{ab})^{n} added to the Einstein-Hilbert Lagrangian of general relativity on approach to an initial cosmological singularity. Earlier, we had shown that, when % n=1, a special isotropic vacuum solution exists which behaves like the radiation-dominated Friedmann universe and is stable to anisotropic and small inhomogeneous perturbations of scalar, vector and tensor type. This is completely different to the situation that holds in general relativity, where an isotropic initial cosmological singularity is unstable in vacuum and under a wide range of non-vacuum conditions. We show that when n1n\neq 1, although a special isotropic vacuum solution found by Clifton and Barrow always exists, it is no longer stable when the initial singularity is approached. We find the particular stability conditions under the influence of tensor, vector, and scalar perturbations for general nn for both solution branches. On approach to the initial singularity, the isotropic vacuum solution with scale factor a(t)=tP/3a(t)=t^{P_{-}/3} is found to be stable to tensor perturbations for 0.5<n<1.13090.5<n< 1.1309 and stable to vector perturbations for 0.861425<n10.861425 < n \leq 1, but is unstable as t0t \to 0 otherwise. The solution with scale factor a(t)=tP+/3a(t)=t^{P_{+}/3} is not relevant to the case of an initial singularity for n>1n>1 and is unstable as t0t \to 0 for all nn for each type of perturbation.Comment: 25 page
    corecore