171 research outputs found
Recovery from acidosis is a robust trigger for loss of force in murine hypokalemic periodic paralysis.
Periodic paralysis is an ion channelopathy of skeletal muscle in which recurrent episodes of weakness or paralysis are caused by sustained depolarization of the resting potential and thus reduction of fiber excitability. Episodes are often triggered by environmental stresses, such as changes in extracellular K+, cooling, or exercise. Rest after vigorous exercise is the most common trigger for weakness in periodic paralysis, but the mechanism is unknown. Here, we use knock-in mutant mouse models of hypokalemic periodic paralysis (HypoKPP; NaV1.4-R669H or CaV1.1-R528H) and hyperkalemic periodic paralysis (HyperKPP; NaV1.4-M1592V) to investigate whether the coupling between pH and susceptibility to loss of muscle force is a possible contributor to exercise-induced weakness. In both mouse models, acidosis (pH 6.7 in 25% CO2) is mildly protective, but a return to pH 7.4 (5% CO2) unexpectedly elicits a robust loss of force in HypoKPP but not HyperKPP muscle. Prolonged exposure to low pH (tens of minutes) is required to cause susceptibility to post-acidosis loss of force, and the force decrement can be prevented by maneuvers that impede Cl- entry. Based on these data, we propose a mechanism for post-acidosis loss of force wherein the reduced Cl- conductance in acidosis leads to a slow accumulation of myoplasmic Cl- A rapid recovery of both pH and Cl- conductance, in the context of increased [Cl]in/[Cl]out, favors the anomalously depolarized state of the bistable resting potential in HypoKPP muscle, which reduces fiber excitability. This mechanism is consistent with the delayed onset of exercise-induced weakness that occurs with rest after vigorous activity
Stac3 enhances expression of human CaV1.1 in Xenopus oocytes and reveals gating pore currents in HypoPP mutant channels.
Mutations of CaV1.1, the pore-forming subunit of the L-type Ca2+ channel in skeletal muscle, are an established cause of hypokalemic periodic paralysis (HypoPP). However, functional assessment of HypoPP mutant channels has been hampered by difficulties in achieving sufficient plasma membrane expression in cells that are not of muscle origin. In this study, we show that coexpression of Stac3 dramatically increases the expression of human CaV1.1 (plus α2-δ1b and β1a subunits) at the plasma membrane of Xenopus laevis oocytes. In voltage-clamp studies with the cut-open oocyte clamp, we observe ionic currents on the order of 1 μA and gating charge displacements of ∼0.5-1 nC. Importantly, this high expression level is sufficient to ascertain whether HypoPP mutant channels are leaky because of missense mutations at arginine residues in S4 segments of the voltage sensor domains. We show that R528H and R528G in S4 of domain II both support gating pore currents, but unlike other R/H HypoPP mutations, R528H does not conduct protons. Stac3-enhanced membrane expression of CaV1.1 in oocytes increases the throughput for functional studies of disease-associated mutations and is a new platform for investigating the voltage-dependent properties of CaV1.1 without the complexity of the transverse tubule network in skeletal muscle
The Semiclassical Modified Nonlinear Schroedinger Equation I: Modulation Theory and Spectral Analysis
We study an integrable modification of the focusing nonlinear
Schroedinger equation from the point of view of semiclassical asymptotics. In
particular, (i) we establish several important consequences of the mixed-type
limiting quasilinear system including the existence of maps that embed the
limiting forms of both the focusing and defocusing nonlinear Schroedinger
equations into the framework of a single limiting system for the modified
equation, (ii) we obtain bounds for the location of discrete spectrum for the
associated spectral problem that are particularly suited to the semiclassical
limit and that generalize known results for the spectrum of the nonselfadjoint
Zakharov-Shabat spectral problem, and (iii) we present a multiparameter family
of initial data for which we solve the associated spectral problem in terms of
special functions for all values of the semiclassical scaling parameter. We
view our results as part of a broader project to analyze the semiclassical
limit of the modified nonlinear Schroedinger equation via the noncommutative
steepest descent procedure of Deift and Zhou, and we also present a
self-contained development of a Riemann-Hilbert problem of inverse scattering
that differs from those given in the literature and that is well-adapted to
semiclassical asymptotics.Comment: 56 Pages, 21 Figure
On the modified nonlinear Schr\"odinger equation in the semiclassical limit: supersonic, subsonic, and transsonic behavior
The purpose of this paper is to present a comparison between the modified
nonlinear Schr\"odinger (MNLS) equation and the focusing and defocusing
variants of the (unmodified) nonlinear Schr\"odinger (NLS) equation in the
semiclassical limit. We describe aspects of the limiting dynamics and discuss
how the nature of the dynamics is evident theoretically through
inverse-scattering and noncommutative steepest descent methods. The main
message is that, depending on initial data, the MNLS equation can behave either
like the defocusing NLS equation, like the focusing NLS equation (in both cases
the analogy is asymptotically accurate in the semiclassical limit when the NLS
equation is posed with appropriately modified initial data), or like an
interesting mixture of the two. In the latter case, we identify a feature of
the dynamics analogous to a sonic line in gas dynamics, a free boundary
separating subsonic flow from supersonic flow.Comment: 30 pages, 2 figures. Submitted to Acta Mathematica Scientia (special
issue in honor of Peter Lax's 85th birthday
Creation and manipulation of entanglement in spin chains far from equilibrium
We investigate creation, manipulation, and steering of entanglement in spin
chains from the viewpoint of quantum communication between distant parties. We
demonstrate how global parametric driving of the spin-spin coupling and/or
local time-dependent Zeeman fields produce a large amount of entanglement
between the first and the last spin of the chain. This occurs whenever the
driving frequency meets a resonance condition, identified as "entanglement
resonance". Our approach marks a promising step towards an efficient quantum
state transfer or teleportation in solid state system. Following the reasoning
of Zueco et al. [1], we propose generation and routing of multipartite
entangled states by use of symmetric tree-like structures of spin chains.
Furthermore, we study the effect of decoherence on the resulting spin
entanglement between the corresponding terminal spins.Comment: 10 pages, 8 figure
Recommended from our members
Potassium-sensitive loss of muscle force in the setting of reduced inward rectifier K+ current: Implications for Andersen–Tawil syndrome
Andersen-Tawil syndrome (ATS) is an ion channelopathy with variable penetrance for the triad of periodic paralysis, arrhythmia, and dysmorphia. Dominant-negative mutations of KCNJ2 encoding the Kir2.1 potassium channel subunit are found in 60% of ATS families. As with most channelopathies, episodic attacks in ATS are frequently triggered by environmental stresses: exercise for periodic paralysis or stress with adrenergic stimulation for arrhythmia. Fluctuations in K+, either low or high, are potent triggers for attacks of weakness in other variants of periodic paralysis (hypokalemic periodic paralysis or hyperkalemic periodic paralysis). For ATS, the [K+] dependence is less clear; with reports describing weakness in high-K+ or low-K+. Patient trials with controlled K+ challenges are not possible, due to arrhythmias. We have developed two mouse models (genetic and pharmacologic) with reduced Kir currents, to address the question of K+-sensitive loss of force. These animal models and computational simulations both show K+-dependent weakness occurs only when Kir current is <30% of wildtype. As the Kir deficit becomes more severe, the phenotype shifts from high-K+-induced weakness to a combination where either high-K+ or low-K+ triggers weakness. A K+ channel agonist, retigabine, protects muscle from K+-sensitive weakness in our mouse models of the skeletal muscle involvement in ATS
Sensory Communication
Contains table of contents for Section 2, an introduction and reports on fourteen research projects.National Institutes of Health Grant RO1 DC00117National Institutes of Health Grant RO1 DC02032National Institutes of Health/National Institute on Deafness and Other Communication Disorders Grant R01 DC00126National Institutes of Health Grant R01 DC00270National Institutes of Health Contract N01 DC52107U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-95-K-0014U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0003U.S. Navy - Office of Naval Research Grant N00014-96-1-0379U.S. Air Force - Office of Scientific Research Grant F49620-95-1-0176U.S. Air Force - Office of Scientific Research Grant F49620-96-1-0202U.S. Navy - Office of Naval Research Subcontract 40167U.S. Navy - Office of Naval Research/Naval Air Warfare Center Contract N61339-96-K-0002National Institutes of Health Grant R01-NS33778U.S. Navy - Office of Naval Research Grant N00014-92-J-184
Effects of membrane depolarization and changes in extracellular [K+] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue
Repetitive activation of skeletal muscle fibers leads to a reduced transmembrane K+ gradient. The resulting membrane depolarization has been proposed to play a major role in the onset of muscle fatigue. Nevertheless, raising the extracellular K+ (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}) concentration (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}) to 10 mM potentiates twitch force of rested amphibian and mammalian fibers. We used a double Vaseline gap method to simultaneously record action potentials (AP) and Ca2+ transients from rested frog fibers activated by single and tetanic stimulation (10 pulses, 100 Hz) at various \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} and membrane potentials. Depolarization resulting from current injection or raised \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} produced an increase in the resting [Ca2+]. Ca2+ transients elicited by single stimulation were potentiated by depolarization from −80 to −60 mV but markedly depressed by further depolarization. Potentiation was inversely correlated with a reduction in the amplitude, overshoot and duration of APs. Similar effects were found for the Ca2+ transients elicited by the first pulse of 100 Hz trains. Depression or block of Ca2+ transient in response to the 2nd to 10th pulses of 100 Hz trains was observed at smaller depolarizations as compared to that seen when using single stimulation. Changes in Ca2+ transients along the trains were associated with impaired or abortive APs. Raising \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} to 10 mM potentiated Ca2+ transients elicited by single and tetanic stimulation, while raising \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} to 15 mM markedly depressed both responses. The effects of 10 mM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} on Ca2+ transients, but not those of 15 mM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document}, could be fully reversed by hyperpolarization. The results suggests that the force potentiating effects of 10 mM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} might be mediated by depolarization dependent changes in resting [Ca2+] and Ca2+ release, and that additional mechanisms might be involved in the effects of 15 mM \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}\end{document} on force generation
- …
