5,100 research outputs found
O(a^2) cutoff effects in lattice Wilson fermion simulations
In this paper we propose to interpret the large discretization artifacts
affecting the neutral pion mass in maximally twisted lattice QCD simulations as
O(a^2) effects whose magnitude is roughly proportional to the modulus square of
the (continuum) matrix element of the pseudoscalar density operator between
vacuum and one-pion state. The numerical size of this quantity is determined by
the dynamical mechanism of spontaneous chiral symmetry breaking and turns out
to be substantially larger than its natural magnitude set by the value of
Lambda_QCD.Comment: 38 pages, 1 figure, 2 table
A-term inflation and the MSSM
The parameter space for A-term inflation is explored with . With p=6 and \lambda_p~1, the observed spectrum and
spectral tilt can be obtained with soft mass of order 10^2 GeV but not with a
much higher mass. The case p=3 requires \lambda_p~10^{-9} to 10^{-12}. The
ratio m/A requires fine-tuning, which may be justified on environmental
grounds. An extension of the MSSM to include non-renormalizable terms and/or
Dirac neutrino masses might support either A-term inflation or modular
inflation.Comment: 10 pages, 3 figures; Comments added, typos correcte
A precise determination of in quenched QCD
The parameter is computed in quenched lattice QCD with Wilson twisted
mass fermions. Two variants of tmQCD are used; in both of them the relevant
four-fermion operator is renormalised multiplicatively. The
renormalisation adopted is non-perturbative, with a Schroedinger functional
renormalisation condition. Renormalisation group running is also
non-perturbative, up to very high energy scales. In one of the two tmQCD
frameworks the computations have been performed at the physical -meson mass,
thus eliminating the need of mass extrapolations. Simulations have been
performed at several lattice spacings and the continuum limit was reached by
combining results from both tmQCD regularisations. Finite volume effects have
been partially checked and turned out to be small. Exploratory studies have
also been performed with non-degenerate valence flavours. The final result for
the RGI bag parameter, with all sources of uncertainty (except quenching) under
control, is .Comment: 54 pages, 11 figure
Discovering New Physics in the Decays of Black Holes
If the scale of quantum gravity is near a TeV, the LHC will be producing one
black hole (BH) about every second, thus qualifying as a BH factory. With the
Hawking temperature of a few hundred GeV, these rapidly evaporating BHs may
produce new, undiscovered particles with masses ~100 GeV. The probability of
producing a heavy particle in the decay depends on its mass only weakly, in
contrast with the exponentially suppressed direct production. Furthemore, BH
decays with at least one prompt charged lepton or photon correspond to the
final states with low background. Using the Higgs boson as an example, we show
that it may be found at the LHC on the first day of its operation, even with
incomplete detectors.Comment: 4 pages, 3 figure
\Delta S=2 and \Delta C=2 bag parameters in the SM and beyond from Nf=2+1+1 twisted-mass LQCD
We present unquenched lattice QCD results for the matrix elements of
four-fermion operators relevant to the description of the neutral K and D
mixing in the Standard Model and its extensions. We have employed simulations
with Nf = 2 + 1 + 1 dynamical sea quarks at three values of the lattice
spacings in the interval 0.06 - 0.09 fm and pseudoscalar meson masses in the
range 210 - 450 MeV. Our results are extrapolated to the continuum limit and to
the physical pion mass. Renormalization constants have been determined
non-perturbatively in the RI-MOM scheme. In particular, for the Kaon
bag-parameter, which is relevant for the \overline{K}^0-K^0 mixing in the
Standard Model, we obtain B_K^{RGI} = 0.717(24).Comment: Added comments to error budget discussion; fig.19 corrected. Version
to appear in PR
Non-perturbative scale evolution of four-fermion operators in two-flavour QCD
We apply finite-size recursion techniques based on the Schrodinger functional
formalism to determine the renormalization group running of four-fermion
operators which appear in the Delta S=2 effective weak Hamiltonian of the
Standard Model. Our calculations are done using O(a) improved Wilson fermions
with N_f=2 dynamical flavours. Preliminary results are presented for the
four-fermion operator which determines the B_K parameter in tmQCD.Comment: 7 pages, 2 figures, talk presented at Lattice2006 (Renormalization
MSSM Higgses as the source of reheating and all matter
We consider the possibility that the dark energy responsible for inflation is
deposited into extra dimensions outside of our observable universe. Reheating
and all matter can then be obtained from the MSSM flat direction condensate
involving the Higgses and , which acquires large amplitude by virtue
of quantum fluctuations during inflation. The reheat temperature is GeV so that there is no gravitino problem. We find a spectral
index with a very weak dependence on the Higgs potential.Comment: 4 page
- …
