55 research outputs found

    There are No Causality Problems for Fermi's Two Atom System

    Full text link
    A repeatedly discussed gedanken experiment, proposed by Fermi to check Einstein causality, is reconsidered. It is shown that, contrary to a recent statement made by Hegerfeldt, there appears no causality paradoxon in a proper theoretical description of the experiment.Comment: 6 pages, latex, DESY 94-02

    The averaged null energy condition for general quantum field theories in two dimensions

    Full text link
    It is shown that the averaged null energy condition is fulfilled for a dense, translationally invariant set of vector states in any local quantum field theory in two-dimensional Minkowski spacetime whenever the theory has a mass gap and possesses an energy-momentum tensor. The latter is assumed to be a Wightman field which is local relative to the observables, generates locally the translations, is divergence-free, and energetically bounded. Thus the averaged null energy condition can be deduced from completely generic, standard assumptions for general quantum field theory in two-dimensional flat spacetime.Comment: LateX2e, 16 pages, 1 eps figur

    Scaling algebras and pointlike fields: A nonperturbative approach to renormalization

    Full text link
    We present a method of short-distance analysis in quantum field theory that does not require choosing a renormalization prescription a priori. We set out from a local net of algebras with associated pointlike quantum fields. The net has a naturally defined scaling limit in the sense of Buchholz and Verch; we investigate the effect of this limit on the pointlike fields. Both for the fields and their operator product expansions, a well-defined limit procedure can be established. This can always be interpreted in the usual sense of multiplicative renormalization, where the renormalization factors are determined by our analysis. We also consider the limits of symmetry actions. In particular, for suitable limit states, the group of scaling transformations induces a dilation symmetry in the limit theory.Comment: minor changes and clarifications; as to appear in Commun. Math. Phys.; 37 page

    Lightfront holography and area density of entropy associated with localization on wedge-horizons

    Full text link
    It is shown that a suitably formulated algebraic lightfront holography, in which the lightfront is viewed as the linear extension of the upper causal horizon of a wedge region, is capable of overcoming the shortcomings of the old lightfront quantization. The absence of transverse vacuum fluctuations which this formalism reveals, is responsible for an area (edge of the wedge) -rearrangement of degrees of freedom which in turn leads to the notion of area density of entropy for a ``split localization''. This area proportionality of horizon associated entropy has to be compared to the volume dependence of ordinary heat bath entropy. The desired limit, in which the split distance vanishes and the localization on the horizon becomes sharp, can at most yield a relative area density which measures the ratio of area densities for different quantum matter. In order to obtain a normalized area density one needs the unknown analog of a second fundamental law of thermodynamics for thermalization caused by vacuum fluctuation through localization on causal horizons. This is similar to the role of the classical Gibbs form of that law which relates Bekenstein's classical area formula with the Hawking quantum mechanism for thermalization from black holes. PACS: 11.10.-z, 11.30.-j, 11.55.-mComment: The last two sections have been modified. This is the form in which the paper will be published in IJP

    Bondi-Metzner-Sachs symmetry, holography on null-surfaces and area proportionality of "light-slice" entropy

    Full text link
    It is shown that certain kinds of behavior, which hitherto were expected to be characteristic for classical gravity and quantum field theory in curved spacetime, as the infinite dimensional Bondi-Metzner-Sachs symmetry, holography on event horizons and an area proportionality of entropy, have in fact an unnoticed presence in Minkowski QFT. This casts new light on the fundamental question whether the volume propotionality of heat bath entropy and the (logarithmically corrected) dimensionless area law obeyed by localization-induced thermal behavior are different geometric parametrizations which share a common primordeal algebraic origin. Strong arguments are presented that these two different thermal manifestations can be directly related, this is in fact the main aim of this paper. It will be demonstrated that QFT beyond the Lagrangian quantization setting receives crucial new impulses from holography onto horizons. The present paper is part of a project aimed at elucidating the enormous physical range of "modular localization". The latter does not only extend from standard Hamitonian heat bath thermal states to thermal aspects of causal- or event- horizons addressed in this paper. It also includes the recent understanding of the crossing property of formfactors whose intriguing similarity with thermal properties was, although sometimes noticed, only sufficiently understood in the modular llocalization setting.Comment: 42 pages, changes, addition of new results and new references, in this form the paper will appear in Foundations of Physic

    Topological features of massive bosons on two dimensional Einstein space-time

    Full text link
    In this paper we tackle the problem of constructing explicit examples of topological cocycles of Roberts' net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.Comment: 41 pages, title changed, minor changes, typos corrected, references added. Accepted for publication in Ann. Henri Poincare

    The paradigm of the area law and the structure of transversal and longitudinal lightfront degrees of freedom

    Full text link
    It is shown that an algebraically defined holographic projection of a QFT onto the lightfront changes the local quantum properties in a very drastic way. The expected ubiquitous vacuum polarization characteristic of QFT is confined to the lightray (longitudinal) direction, whereas operators whose localization is transversely separated are completely free of vacuum correlations. This unexpected ''transverse return to QM'' combined with the rather universal nature of the strongly longitudinal correlated vacuum correlations (which turn out to be described by rather kinematical chiral theories) leads to a d-2 dimensional area structure of the d-1 dimensional lightfront theory. An additive transcription in terms of an appropriately defined entropy related to the vacuum restricted to the horizon is proposed and its model independent universality aspects which permit its interpretation as a quantum candidate for Bekenstein's area law are discussed. The transverse tensor product foliation structure of lightfront degrees of freedom is essential for the simplifying aspects of the algebraic lightcone holography. Key-words: Quantum field theory; Mathematical physics, Quantum gravityComment: 16 pages latex, identical to version published in JPA: Math. Gen. 35 (2002) 9165-918

    On dilation symmetries arising from scaling limits

    Full text link
    Quantum field theories, at short scales, can be approximated by a scaling limit theory. In this approximation, an additional symmetry is gained, namely dilation covariance. To understand the structure of this dilation symmetry, we investigate it in a nonperturbative, model independent context. To that end, it turns out to be necessary to consider non-pure vacuum states in the limit. These can be decomposed into an integral of pure states; we investigate how the symmetries and observables of the theory behave under this decomposition. In particular, we consider several natural conditions of increasing strength that yield restrictions on the decomposed dilation symmetry.Comment: 40 pages, 1 figur

    On the Construction of Quantum Field Theories with Factorizing S-Matrices

    Full text link
    The subject of this thesis is a novel construction method for interacting relativistic quantum field theories on two-dimensional Minkowski space. The input in this construction is not a classical Lagrangian, but rather a prescribed factorizing S-matrix, i.e. the inverse scattering problem for such quantum field theories is studied. For a large class of factorizing S-matrices, certain associated quantum fields, which are localized in wedge-shaped regions of Minkowski space, are constructed explicitely. With the help of these fields, the local observable content of the corresponding model is defined and analyzed by employing methods from the algebraic framework of quantum field theory. The abstract problem in this analysis amounts to the question under which conditions an algebra of wedge-localized observables can be used to generate a net of local observable algebras with the right physical properties. The answer given here uses the so-called modular nuclearity condition, which is shown to imply the existence of local observables and the Reeh-Schlieder property. In the analysis of the concrete models, this condition is proven for a large family of S-matrices, including the scattering operators of the Sinh-Gordon model and the scaling Ising model as special examples. The so constructed models are then investigated with respect to their scattering properties. They are shown to solve the inverse scattering problem for the considered S-matrices, and a proof of asymptotic completeness is given.Comment: PhD thesis, Goettingen university, 2006 (advisor: D. Buchholz) 153 pages, 10 figure
    corecore