2,620 research outputs found

    Mechanoregulation of bone remodeling and healing as inspiration for self-repair in materials

    No full text
    The material bone has attracted the attention of material scientists due to its fracture resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly synthesized material avoids the accumulation of fatigue damage. This remodeling process is also the basis for structural adaptation to common loading conditions, thereby reducing the probability of material failure. In the case of fracture, an initial step of tissue formation is followed by a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the control function is considered, which describes mechanoregulation as a link between mechanical stimulation and the local response of the material through changes in structure or material properties. Mechanical forces propagate over large distances leading to a complex non-local feedback between mechanical stimulation and material response. To better understand such phenomena, computer models are often employed. As expected from control theory, negative and positive feedback loops lead to entirely different time evolutions, corresponding to stable and unstable states of the material system. After some background information about bone remodeling and healing, we describe a few representative models, the corresponding control functions, and their consequences. The results are then discussed with respect to the potential design of synthetic materials with specific self-repair properties

    Improved full one-loop corrections to A^0 -> \sf_1 \sf_2 and \sf_2 -> \sf_1 A^0

    Full text link
    We calculate the full electroweak one-loop corrections to the decay of the CP-odd Higgs boson A^0 into scalar fermions in the minimal supersymmetric extension of the Standard Model. For this purpose many parameters of the MSSM have to be properly renormalized in the on-shell renormalization scheme. We have also included the SUSY-QCD corrections. For the decay into bottom squarks and tau sleptons, especially for large \tan\b, the corrections can be very large making the perturbation expansion unreliable. We solve this problem by an appropriate definition of the tree-level coupling in terms of running fermion masses and running trilinear couplings A_f. We also discuss the decay of heavy scalar fermions into light scalar fermions and A^0. We find that the corrections can be sizeable and therefore cannot be neglected.Comment: 42 pages, 20 figures (23 eps-files

    Frictional Drag Between Coupled 2D Hole Gases in GaAs/AlGaAs Heterostructures

    Full text link
    We report on the first measurements of the drag effect between coupled 2D-hole gases. We investigate the coupling by changing the carrier densities in the quantum wells, the widths of the barriers between the gases and the perpendicular magnetic field. From the data we are able to attribute the frictional drag to phonon coupling, because the non-parabolicity allows to tune the Fermi wavevector and the Fermi velocity separately and, thereby, to distinguish between phonon- and plasmon-dominated coupling.Comment: 10 pages, 5 figure

    Evidence of breakdown of the spin symmetry in diluted 2D electron gases

    Full text link
    Recent claims of an experimental demonstration of spontaneous spin polarisation in dilute electron gases \cite{young99} revived long standing theoretical discussions \cite{ceper99,bloch}. In two dimensions, the stabilisation of a ferromagnetic fluid might be hindered by the occurrence of the metal-insulator transition at low densities \cite{abra79}. To circumvent localisation in the two-dimensional electron gas (2DEG) we investigated the low populated second electron subband, where the disorder potential is mainly screened by the high density of the first subband. This letter reports on the breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of the exchange and correlation terms of the Coulomb interaction, as determined from the energies of the collective charge and spin excitations. Inelastic light scattering experiments and calculations within the time-dependent local spin-density approximation give strong evidence for the existence of a ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte

    An electrostatically defined serial triple quantum dot charged with few electrons

    Full text link
    A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs heterostructure is characterized by using a nearby quantum point contact as charge detector. Ground state stability diagrams demonstrate control in the regime of few electrons charging the TQD. An electrostatic model is developed to determine the ground state charge configurations of the TQD. Numerical calculations are compared with experimental results. In addition, the tunneling conductance through all three quantum dots in series is studied. Quantum cellular automata processes are identified, which are where charge reconfiguration between two dots occurs in response to the addition of an electron in the third dot.Comment: 12 pages, 9 figure
    corecore