1,669 research outputs found

    Ultrafast spatio-temporal dynamics of terahertz generation by ionizing two-color femtosecond pulses in gases

    Get PDF
    We present a combined theoretical and experimental study of spatio-temporal propagation effects in terahertz (THz) generation in gases using two-color ionizing laser pulses. The observed strong broadening of the THz spectra with increasing gas pressure reveals the prominent role of spatio-temporal reshaping and of a plasma-induced blue-shift of the pump pulses in the generation process. Results obtained from (3+1)-dimensional simulations are in good agreement with experimental findings and clarify the mechanisms responsible for THz emission

    Time resolved X ray absorption spectroscopy of infrared laser induced temperature jumps in liquid water

    Get PDF
    A time resolved X ray absorption study of the structural dynamics of liquid water on a picosecond timescale is presented. We apply femtosecond midinfrared pulses to resonantly excite the intramolecular O H stretching band of liquid water and monitor the transient response in the oxygen K edge absorption spectrum with picosecond X ray pulses. In this way, structural changes in the hydrogen bond network of liquid water upon an ultrafast temperature jump of approximately 20 K are investigated. The changes of the X ray absorption as induced by such a temperature jump are about 3.2 . This demonstrates that our method serves as a sensitive probe of transient structural changes in liquid water and that combined infrared laser synchrotron experiments with substantially shorter X ray pulses, such as generated with a femtosecond slicing scheme, are possibl

    Coherent oscillations of electrons in tunnel-coupled wells under ultrafast intersubband excitation

    Full text link
    Ultrafast intersubband excitation of electrons in tunnell-coupled wells is studied depending on the structure parameters, the duration of the infrared pump and the detuning frequency. The temporal dependencies of the photoinduced concentration and dipole moment are obtained for two cases of transitions: from the single ground state to the tunnel-coupled excited states and from the tunnel-coupled states to the single excited state. The peculiarities of dephasing and population relaxation processes are also taken into account. The nonlinear regime of the response is also considered when the splitting energy between the tunnel-coupled levels is renormalized by the photoexcited electron concentration. The dependencies of the period and the amplitude of oscillations on the excitation pulse are presented with a description of the nonlinear oscillations damping.Comment: 8 pages, 12 figure

    Organism/Organic Exposure to Orbital Stresses (OOREOS) Satellite: Radiation Exposure in LEO and Supporting Laboratory Studies

    Get PDF
    We will present the results from the exposure of the metalloporphyrin iron tetraphenylporphyrin chloride (FeTPPCI), anthraufin (C(sub 14)H(sub 8)(O sub 4) (Anth) and Isoviolanthrene (C(sub 34H sub 18) (IVA) to the outher space environment, measured in situ aboard the Organism/Organic Exposure to Orbital Stresses nanosatellite. The compounds were exposed for a period of 17 months (3700 hours of direct solar exposure) including broad-spectrum solar radiation (approx. 122 nm to the near infrared). The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments. Transmission spectra (200-1000 nm) were recorded for each film, at first daily and subsequently every 15 days, along with a solar spectrum and the dark response of the detector array. In addition to analysis via UV-Vis spectroscopy, the laboratory controls were also monitored via infrared and far-UV spectroscopy. The results presented will include the finding that the FeTPPCI and IVA organic films in contact with a humid headspace gas (0.8-2.3%) exhibit faster degradation times, upon irradiation, in comparison with identical films under dry headspaces gases, whereas the Anth thin film exhibited a higher degree of photostability. In the companion laboratory experiments, simulated solar exposure of FeTPI films in contact with either Ar or CO(sub -2):O(sub -2):Ar (10:0.01:1000) headspace gas results in growth of a band in the films infrared spectra at 1961 cm(sup 1). Our assignment of this new spectral feature and the corresponding rational will be presented. The relevance of O/OREOS findings to planetary science, biomarker research, and the photostability of organic materials in astrobiologically relevant environments will also be discussed

    Coherent Optical polarization of Bulk GaAs Studied by Femtosecond Photon-Echo Spectroscopy

    Get PDF
    The nonlinear polarization close to the band gap of GaAs is studied by spectrally and temporally resolved four-wave mixing. Excitonic and free carrier contributions both excited within the bandwidth of the 100 fs pulses are distinguished for the first time. The excitonic part dominates at carrier densities below 1016 cm-3. At higher density, nonthermalized free carriers give rise to an additional component resonant to the pulse that shows a photon-echo-like time behavior. Monte Carlo simulations including the coherent polarization and the scattering dynamics of the carriers account for the data

    Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope

    Get PDF
    The ANTARES telescope is well-suited for detecting astrophysical transient neutrino sources as it can observe a full hemisphere of the sky at all times with a high duty cycle. The background due to atmospheric particles can be drastically reduced, and the point-source sensitivity improved, by selecting a narrow time window around possible neutrino production periods. Blazars, being radio-loud active galactic nuclei with their jets pointing almost directly towards the observer, are particularly attractive potential neutrino point sources, since they are among the most likely sources of the very high-energy cosmic rays. Neutrinos and gamma rays may be produced in hadronic interactions with the surrounding medium. Moreover, blazars generally show high time variability in their light curves at different wavelengths and on various time scales. This paper presents a time-dependent analysis applied to a selection of flaring gamma-ray blazars observed by the FERMI/LAT experiment and by TeV Cherenkov telescopes using five years of ANTARES data taken from 2008 to 2012. The results are compatible with fluctuations of the background. Upper limits on the neutrino fluence have been produced and compared to the measured gamma-ray spectral energy distribution.Comment: 27 pages, 16 figure

    Excitonic and free-carrier polarizations of bulk GaAs studied by femtosecond coherent spectroscopy

    Get PDF
    The transient third-order polarization at the band gap of undoped and p-doped GaAs is investigated by spectrally and temporally resolved four-wave mixing. Excitonic and free-carrier contributions simultaneously excited within the bandwidth of the 100-fs pulses are clearly distinguished by their different spectral envelopes. The excitonic part dominates at carrier densities below 1016 cm-3 and shows a time evolution governed by exciton-free-carrier scattering and by many-body effects. At higher density, the free-carrier polarization has a strength similar to the exciton contribution and exhibits a spectrum resonant to the femtosecond pulses with a photon-echo-like temporal behavior. The data are analyzed by a numerical solution of the semiconductor Bloch equations including an ensemble Monte Carlo simulation of the scattering dynamics of the carriers. The theoretical model is in good agreement with the experimental results

    Ultrafast Coherent Generation of Hot Electrons Studied via Band-to-Acceptor Luminescence in GaAs

    Get PDF
    The distribution of hot electrons excited with femtosecond laser pulses is studied via spectrally resolved band-to-acceptor luminescence. Our data demonstrate for the first time that the coherent coupling between the laser pulse and the interband polarization strongly influences the initial carrier distribution. The energetic width of carrier generation is broadened due to rapid phase-breaking scattering events. Theoretical results from a Monte Carlo solution of the semiconductor Bloch equations including on the same kinetic level coherent and incoherent phenomena, are in excellent agreement with the experimental data
    corecore