18,651 research outputs found

    Biomechanical analysis of a cranial Patient Specific Implant on the interface with the bone using the Finite Element Method

    Full text link
    - New advance technologies based on reverse engineering , design and additive manufacturing, have expanded design capabilities for biomedical applications to include Patient Specific Implants (PSI). This change in design paradigms needs advanced tools to assess the mechanical performance of the product, and simulate the impact on the patient. In this work, we perform a structural analysis on the interface of a cranial PSI under static loading conditions. Based on those simulations, we have identified the regions with high stress and strain and checked the failure criteria both in the implant and the skull. We evaluate the quality of the design of the implant and determine their response given different materials, in order to ensure optimality of the final product to be manufactured

    Spatiotemporal and Wavenumber Resolved Bicoherence at the Low to High Confinement Transition in the TJ-II Stellarator

    Full text link
    Plasma turbulence is studied using Doppler reflectometry at the TJ-II stellarator. By scanning the tilt angle of the probing beam, different values of the perpendicular wave numbers are probed at the reflection layer. In this way, the interaction between zonal flows and turbulence is reported with (a) spatial, (b) temporal, and (c) wavenumber resolution for the first time in any magnetic confinement fusion device. We report measurements of the bicoherence across the Low to High (L--H) confinement transition at TJ-II. We examine both fast transitions and slow transitions characterized by an intermediate (I) phase. The bicoherence, understood to reflect the non-linear coupling between the perpendicular velocity (zonal flow) and turbulence amplitude, is significantly enhanced in a time window of several tens of ms around the time of the L--H transition. It is found to peak at a specific radial position (slightly inward from the radial electric field shear layer in H mode), and is associated with a specific perpendicular wave number (k612k_\perp \simeq 6-12 cm1^{-1}, kρs0.82k_\perp \rho_s \simeq 0.8-2). In all cases, the bicoherence is due to the interaction between high frequencies (1\simeq 1 MHz) and a rather low frequency (50\lesssim 50 kHz), as expected for a zonal flow.Comment: 11 pages, 3 figure

    Dynamical Mass Generation in Landau gauge QCD

    Get PDF
    We summarise results on the infrared behaviour of Landau gauge QCD from the Green's functions approach and lattice calculations. Approximate, nonperturbative solutions for the ghost, gluon and quark propagators as well as first results for the quark-gluon vertex from a coupled set of Dyson-Schwinger equations are compared to quenched and unquenched lattice results. Almost quantitative agreement is found for all three propagators. Similar effects of unquenching are found in both approaches. The dynamically generated quark masses are close to `phenomenological' values. First results for the quark-gluon vertex indicate a complex tensor structure of the non-perturbative quark-gluon interaction.Comment: 6 pages, 6 figures, Summary of a talk given at the international conference QCD DOWN UNDER, March 10 - 19, Adelaide, Australi

    Fluid-solid transition in hard hyper-sphere systems

    Full text link
    In this work we present a numerical study, based on molecular dynamics simulations, to estimate the freezing point of hard spheres and hypersphere systems in dimension D = 4, 5, 6 and 7. We have studied the changes of the Radial Distribution Function (RDF) as a function of density in the coexistence region. We started our simulations from crystalline states with densities above the melting point, and moved down to densities in the liquid state below the freezing point. For all the examined dimensions (including D = 3) it was observed that the height of the first minimum of the RDF changes in an almost continuous way around the freezing density and resembles a second order phase transition. With these results we propose a numerical method to estimate the freezing point as a function of the dimension D using numerical fits and semiempirical approaches. We find that the estimated values of the freezing point are very close to previously reported values from simulations and theoretical approaches up to D = 6 reinforcing the validity of the proposed method. This was also applied to numerical simulations for D = 7 giving new estimations of the freezing point for this dimensionality.Comment: 13 pages, 10 figure

    What the Infrared Behaviour of QCD Vertex Functions in Landau gauge can tell us about Confinement

    Get PDF
    The infrared behaviour of Landau gauge QCD vertex functions is investigated employing a skeleton expansion of the Dyson-Schwinger and Renormalization Group equations. Results for the ghost-gluon, three-gluon, four-gluon and quark-gluon vertex functions are presented. Positivity violation of the gluon propagator, and thus gluon confinement, is demonstrated. Results of the Dyson-Schwinger equations for a finite volume are compared to corresponding lattice data. It is analytically demonstrated that a linear rising potential between heavy quarks can be generated by infrared singularities in the dressed quark-gluon vertex. The selfconsistent mechanism that generates these singularities necessarily entails the scalar Dirac amplitudes of the full vertex and the quark propagator. These can only be present when chiral symmetry is broken, either explicitly or dynamically.Comment: 13 pages, 13 figures; to appear in the Proceedings of ``X Hadron Physics 2007'', Florianopolis, Brazil, March 26 - 31, 200

    Fuzzy Self-Learning Controllers for Elasticity Management in Dynamic Cloud Architectures

    Get PDF
    Cloud controllers support the operation and quality management of dynamic cloud architectures by automatically scaling the compute resources to meet performance guarantees and minimize resource costs. Existing cloud controllers often resort to scaling strategies that are codified as a set of architecture adaptation rules. However, for a cloud provider, deployed application architectures are black-boxes, making it difficult at design time to define optimal or pre-emptive adaptation rules. Thus, the burden of taking adaptation decisions often is delegated to the cloud application. We propose the dynamic learning of adaptation rules for deployed application architectures in the cloud. We introduce FQL4KE, a self-learning fuzzy controller that learns and modifies fuzzy rules at runtime. The benefit is that we do not have to rely solely on precise design-time knowledge, which may be difficult to acquire. FQL4KE empowers users to configure cloud controllers by simply adjusting weights representing priorities for architecture quality instead of defining complex rules. FQL4KE has been experimentally validated using the cloud application framework ElasticBench in Azure and OpenStack. The experimental results demonstrate that FQL4KE outperforms both a fuzzy controller without learning and the native Azure auto-scalin

    La elaboración jurídica de un concepto del patrimonio

    Get PDF
    Sin resume

    Tetraquark spectroscopy

    Full text link
    A complete classification of tetraquark states in terms of the spin-flavor, color and spatial degrees of freedom was constructed. The permutational symmetry properties of both the spin-flavor and orbital parts of the quark-quark and antiquark-antiquark subsystems are discussed. This complete classification is general and model-independent, and is useful both for model-builders and experimentalists. The total wave functions are also explicitly constructed in the hypothesis of ideal mixing; this basis for tetraquark states will enable the eigenvalue problem to be solved for a definite dynamical model. This is also valid for diquark-antidiquark models, for which the basis is a subset of the one we have constructed. An evaluation of the tetraquark spectrum is obtained from the Iachello mass formula for normal mesons, here generalized to tetraquark systems. This mass formula is a generalizazion of the Gell-Mann Okubo mass formula, whose coefficients have been upgraded by means of the latest PDG data. The ground state tetraquark nonet was identified with f0(600)f_{0}(600), κ(800)\kappa(800), f0(980)f_{0}(980), a0(980)a_{0}(980). The mass splittings predicted by this mass formula are compared to the KLOE, Fermilab E791 and BES experimental data. The diquark-antidiquark limit was also studied.Comment: Invited talk at 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Julich, Germany, 10-14 Sep 2007. In the Proceedings of 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon (MENU 2007), Julich, Germany, 10-14 Sep 2007, eConf C070910, 163 (2007
    corecore