157 research outputs found
Regions of beta 2 and beta 4 responsible for differences between the steady state dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 neuronal nicotinic receptors
We constructed chimeras of the rat beta 2 and beta 4 neuronal nicotinic subunits to locate the regions that contribute to differences between the acetylcholine (ACh) dose-response relationships of the alpha 3 beta 2 and alpha 3 beta 4 receptors. Expressed in Xenopus oocytes, the alpha 3 beta 2 receptor displays an EC50 for ACh approximately 20-fold less than the EC50 of the alpha 3 beta 4 receptor. The apparent Hill slope (n(app)) of alpha 3 beta 2 is near one whereas the alpha 3 beta 4 receptor displays an n(app) near two. Substitutions within the first 120 residues convert the EC50 for ACh from one wild-type value to the other. Exchanging just beta 2:104-120 for the corresponding region of beta 4 shifts the EC50 of ACh dose-response relationship in the expected direction but does not completely convert the EC50 of the dose- response relationship from one wild-type value to the other. However, substitutions in the beta 2:104-120 region do account for the relative sensitivity of the alpha 3 beta 2 receptor to cytisine, tetramethylammonium, and ACh. The expression of beta 4-like (strong) cooperativity requires an extensive region of beta 4 (beta 4:1-301). Relatively short beta 2 substitutions (beta 2:104-120) can reduce cooperativity to beta 2-like values. The results suggest that amino acids within the first 120 residues of beta 2 and the corresponding region of beta 4 contribute to an agonist binding site that bridges the alpha and beta subunits in neuronal nicotinic receptors
A detector for continuous measurement of ultra-cold atoms in real time
We present the first detector capable of recording high-bandwidth real time
atom number density measurements of a Bose Einstein condensate. Based on a
two-color Mach-Zehnder interferometer, our detector has a response time that is
six orders of magnitude faster than current detectors based on CCD cameras
while still operating at the shot-noise limit. With this minimally destructive
system it may be possible to implement feedback to stabilize a Bose-Einstein
condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter
Achieving peak brightness in an atom laser
In this paper we present experimental results and theory on the first
continuous (long pulse) Raman atom laser. The brightness that can be achieved
with this system is three orders of magnitude greater than has been previously
demonstrated in any other continuously outcoupled atom laser. In addition, the
energy linewidth of a continuous atom laser can be made arbitrarily narrow
compared to the mean field energy of a trapped condensate. We analyze the flux
and brightness of the atom laser with an analytic model that shows excellent
agreement with experiment with no adjustable parameters.Comment: 4 pages, 4 black and white figures, submitted to Physical Revie
Quantum projection noise limited interferometry with coherent atoms in a Ramsey type setup
Every measurement of the population in an uncorrelated ensemble of two-level
systems is limited by what is known as the quantum projection noise limit.
Here, we present quantum projection noise limited performance of a Ramsey type
interferometer using freely propagating coherent atoms. The experimental setup
is based on an electro-optic modulator in an inherently stable Sagnac
interferometer, optically coupling the two interfering atomic states via a
two-photon Raman transition. Going beyond the quantum projection noise limit
requires the use of reduced quantum uncertainty (squeezed) states. The
experiment described demonstrates atom interferometry at the fundamental noise
level and allows the observation of possible squeezing effects in an atom
laser, potentially leading to improved sensitivity in atom interferometers.Comment: 8 pages, 8 figures, published in Phys. Rev.
A multibeam atom laser: coherent atom beam splitting from a single far detuned laser
We report the experimental realisation of a multibeam atom laser. A single
continuous atom laser is outcoupled from a Bose-Einstein condensate (BEC) via
an optical Raman transition. The atom laser is subsequently split into up to
five atomic beams with slightly different momenta, resulting in multiple,
nearly co-propagating, coherent beams which could be of use in interferometric
experiments. The splitting process itself is a novel realization of Bragg
diffraction, driven by each of the optical Raman laser beams independently.
This presents a significantly simpler implementation of an atomic beam
splitter, one of the main elements of coherent atom optics
Rb-85 tunable-interaction Bose-Einstein condensate machine
We describe our experimental setup for creating stable Bose-Einstein
condensates of Rb-85 with tunable interparticle interactions. We use
sympathetic cooling with Rb-87 in two stages, initially in a tight
Ioffe-Pritchard magnetic trap and subsequently in a weak, large-volume crossed
optical dipole trap, using the 155 G Feshbach resonance to manipulate the
elastic and inelastic scattering properties of the Rb-85 atoms. Typical Rb-85
condensates contain 4 x 10^4 atoms with a scattering length of a=+200a_0. Our
minimalist apparatus is well-suited to experiments on dual-species and spinor
Rb condensates, and has several simplifications over the Rb-85 BEC machine at
JILA (Papp, 2007; Papp and Wieman, 2006), which we discuss at the end of this
article.Comment: 10 pages, 8 figure
Nonadiabatic transitions in the exit channel of atom-molecule collisions: Fine-structure branching in Na+N[sub 2]
We study Na+N₂collisions by laser excitation of the collision complex in a differential scattering experiment. The measured relative population of the Na(3p) fine-structure levels reflects the nonadiabatic transitions occuring in the exit channel of the collision.Theoretical results obtained with a classical-path formalism and accurate quantum chemical data for NaN₂ are found to be in good agreement. The presence of a conical intersection for the T-shaped geometry has a profound influence on the observed fine-structure branching.Support from the Deutsche Forschungsgemeinschaft is
gratefully acknowledged
Collision photography: polarization imaging of atom-molecule collisions
We report differential scattering experiments on the laser excitation of Na+Mcollision pairs with M=N₂, CO, C₂H₂, and CO₂. The collision event is probed by the laser polarization revealing geometric and electronic properties of the collision pair. The experimental data are compared to the results of a Monte Carlo trajectory simulation using ab initio quantum chemical data.Financial support from the Deutsche Forschungsgemeinschaft
and the Schweizerischer Nationalfond (Project No. 20-
065290.01) is gratefully acknowledged
PoN-S : a systematic approach for applying the Physics of Notation (PoN)
Visual Modeling Languages (VMLs) are important instruments of communication between modelers and stakeholders. Thus, it is important to provide guidelines for designing VMLs. The most widespread approach for analyzing and designing concrete syntaxes for VMLs is the so-called Physics of Notation (PoN). PoN has been successfully applied in the analysis of several VMLs. However, despite its popularity, the application of PoN principles for designing VMLs has been limited. This paper presents a systematic approach for applying PoN in the design of the concrete syntax of VMLs. We propose here a design process establishing activities to be performed, their connection to PoN principles, as well as criteria for grouping PoN principles that guide this process. Moreover, we present a case study in which a visual notation for representing Ontology Pattern Languages is designed
- …
