468 research outputs found
Polymer Parametrised Field Theory
Free scalar field theory on 2 dimensional flat spacetime, cast in
diffeomorphism invariant guise by treating the inertial coordinates of the
spacetime as dynamical variables, is quantized using LQG type `polymer'
representations for the matter field and the inertial variables. The quantum
constraints are solved via group averaging techniques and, analogous to the
case of spatial geometry in LQG, the smooth (flat) spacetime geometry is
replaced by a discrete quantum structure. An overcomplete set of Dirac
observables, consisting of (a) (exponentials of) the standard free scalar field
creation- annihilation modes and (b) canonical transformations corresponding to
conformal isometries, are represented as operators on the physical Hilbert
space. None of these constructions suffer from any of the `triangulation'
dependent choices which arise in treatments of LQG. In contrast to the standard
Fock quantization, the non- Fock nature of the representation ensures that the
algebra of conformal isometries as well as that of spacetime diffeomorphisms
are represented in an anomaly free manner. Semiclassical states can be analysed
at the gauge invariant level. It is shown that `physical weaves' necessarily
underly such states and that such states display semiclassicality with respect
to, at most, a countable subset of the (uncountably large) set of observables
of type (a). The model thus offers a fertile testing ground for proposed
definitions of quantum dynamics as well as semiclassical states in LQG.Comment: 44 pages, no figure
Towards new background independent representations for Loop Quantum Gravity
Recently, uniqueness theorems were constructed for the representation used in
Loop Quantum Gravity. We explore the existence of alternate representations by
weakening the assumptions of the so called LOST uniqueness theorem. The
weakened assumptions seem physically reasonable and retain the key requirement
of explicit background independence. For simplicity, we restrict attention to
the case of gauge group U(1).Comment: 22 pages, minor change
Stratification of the orbit space in gauge theories. The role of nongeneric strata
Gauge theory is a theory with constraints and, for that reason, the space of
physical states is not a manifold but a stratified space (orbifold) with
singularities. The classification of strata for smooth (and generalized)
connections is reviewed as well as the formulation of the physical space as the
zero set of a momentum map. Several important features of nongeneric strata are
discussed and new results are presented suggesting an important role for these
strata as concentrators of the measure in ground state functionals and as a
source of multiple structures in low-lying excitations.Comment: 22 pages Latex, 1 figur
Quantum Gravity coupled to Matter via Noncommutative Geometry
We show that the principal part of the Dirac Hamiltonian in 3+1 dimensions
emerges in a semi-classical approximation from a construction which encodes the
kinematics of quantum gravity. The construction is a spectral triple over a
configuration space of connections. It involves an algebra of holonomy loops
represented as bounded operators on a separable Hilbert space and a Dirac type
operator. Semi-classical states, which involve an averaging over points at
which the product between loops is defined, are constructed and it is shown
that the Dirac Hamiltonian emerges as the expectation value of the Dirac type
operator on these states in a semi-classical approximation.Comment: 15 pages, 1 figur
Background independent quantizations: the scalar field I
We are concerned with the issue of quantization of a scalar field in a
diffeomorphism invariant manner. We apply the method used in Loop Quantum
Gravity. It relies on the specific choice of scalar field variables referred to
as the polymer variables. The quantization, in our formulation, amounts to
introducing the `quantum' polymer *-star algebra and looking for positive
linear functionals, called states. The assumed in our paper homeomorphism
invariance allows to determine a complete class of the states. Except one, all
of them are new. In this letter we outline the main steps and conclusions, and
present the results: the GNS representations, characterization of those states
which lead to essentially self adjoint momentum operators (unbounded),
identification of the equivalence classes of the representations as well as of
the irreducible ones. The algebra and topology of the problem, the derivation,
all the technical details and more are contained in the paper-part II.Comment: 13 pages, minor corrections were made in the revised versio
Quantum Spin Dynamics VIII. The Master Constraint
Recently the Master Constraint Programme (MCP) for Loop Quantum Gravity (LQG)
was launched which replaces the infinite number of Hamiltonian constraints by a
single Master constraint. The MCP is designed to overcome the complications
associated with the non -- Lie -- algebra structure of the Dirac algebra of
Hamiltonian constraints and was successfully tested in various field theory
models. For the case of 3+1 gravity itself, so far only a positive quadratic
form for the Master Constraint Operator was derived. In this paper we close
this gap and prove that the quadratic form is closable and thus stems from a
unique self -- adjoint Master Constraint Operator. The proof rests on a simple
feature of the general pattern according to which Hamiltonian constraints in
LQG are constructed and thus extends to arbitrary matter coupling and holds for
any metric signature. With this result the existence of a physical Hilbert
space for LQG is established by standard spectral analysis.Comment: 19p, no figure
Loop Quantum Gravity a la Aharonov-Bohm
The state space of Loop Quantum Gravity admits a decomposition into
orthogonal subspaces associated to diffeomorphism equivalence classes of
spin-network graphs. In this paper I investigate the possibility of obtaining
this state space from the quantization of a topological field theory with many
degrees of freedom. The starting point is a 3-manifold with a network of
defect-lines. A locally-flat connection on this manifold can have non-trivial
holonomy around non-contractible loops. This is in fact the mathematical origin
of the Aharonov-Bohm effect. I quantize this theory using standard field
theoretical methods. The functional integral defining the scalar product is
shown to reduce to a finite dimensional integral over moduli space. A
non-trivial measure given by the Faddeev-Popov determinant is derived. I argue
that the scalar product obtained coincides with the one used in Loop Quantum
Gravity. I provide an explicit derivation in the case of a single defect-line,
corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the
relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded
Background independent quantizations: the scalar field II
We are concerned with the issue of quantization of a scalar field in a
diffeomorphism invariant manner. We apply the method used in Loop Quantum
Gravity. It relies on the specific choice of scalar field variables referred to
as the polymer variables. The quantization, in our formulation, amounts to
introducing the `quantum' polymer *-star algebra and looking for positive
linear functionals, called states. Assumed in our paper homeomorphism
invariance allows to derive the complete class of the states. They are
determined by the homeomorphism invariant states defined on the CW-complex
*-algebra. The corresponding GNS representations of the polymer *-algebra and
their self-adjoint extensions are derived, the equivalence classes are found
and invariant subspaces characterized. In the preceding letter (the part I) we
outlined those results. Here, we present the technical details.Comment: 51 pages, LaTeX, no figures, revised versio
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
On the Relation between Operator Constraint --, Master Constraint --, Reduced Phase Space --, and Path Integral Quantisation
Path integral formulations for gauge theories must start from the canonical
formulation in order to obtain the correct measure. A possible avenue to derive
it is to start from the reduced phase space formulation. In this article we
review this rather involved procedure in full generality. Moreover, we
demonstrate that the reduced phase space path integral formulation formally
agrees with the Dirac's operator constraint quantisation and, more
specifically, with the Master constraint quantisation for first class
constraints. For first class constraints with non trivial structure functions
the equivalence can only be established by passing to Abelian(ised) constraints
which is always possible locally in phase space. Generically, the correct
configuration space path integral measure deviates from the exponential of the
Lagrangian action. The corrections are especially severe if the theory suffers
from second class secondary constraints. In a companion paper we compute these
corrections for the Holst and Plebanski formulations of GR on which current
spin foam models are based.Comment: 43 page
- …
