460 research outputs found

    Non-invasive screening of breast cancer from fingertip smears—a proof of concept study

    Get PDF
    Breast cancer is a global health issue affecting 2.3 million women per year, causing death in over 600,000. Mammography (and biopsy) is the gold standard for screening and diagnosis. Whilst effective, this test exposes individuals to radiation, has limitations to its sensitivity and specificity and may cause moderate to severe discomfort. Some women may also find this test culturally unacceptable. This proof-of-concept study, combining bottom-up proteomics with Matrix Assisted Laser Desorption Ionisation Mass Spectrometry (MALDI MS) detection, explores the potential for a non-invasive technique for the early detection of breast cancer from fingertip smears. A cohort of 15 women with either benign breast disease (n = 5), early breast cancer (n = 5) or metastatic breast cancer (n = 5) were recruited from a single UK breast unit. Fingertips smears were taken from each patient and from each of the ten digits, either at the time of diagnosis or, for metastatic patients, during active treatment. A number of statistical analyses and machine learning approaches were investigated and applied to the resulting mass spectral dataset. The highest performing predictive method, a 3-class Multilayer Perceptron neural network, yielded an accuracy score of 97.8% when categorising unseen MALDI MS spectra as either the benign, early or metastatic cancer classes. These findings support the need for further research into the use of sweat deposits (in the form of fingertip smears or fingerprints) for non-invasive screening of breast cancer

    The analysis of latent fingermarks on polymer banknotes using MALDI-MS

    Get PDF
    In September 2016, the UK adopted a new Bank of England (BoE) £5 polymer banknote, followed by the £10 polymer banknote in September 2017. They are designed to be cleaner, stronger and have increased counterfeit resilience; however, fingermark development can be problematic from the polymer material as various security features and coloured/textured areas have been found to alter the effectiveness of conventional fingermark enhancement techniques (FETs). As fingermarks are one of the most widely used forms of identification in forensic cases, it is important that maximum ridge detail be obtained in order to allow for comparison. This research explores the use of matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) profiling and imaging for the analysis of fingermarks deposited on polymer banknotes. The proposed methodology was able to obtain both physical and chemical information from fingermarks deposited in a range of scenarios including; different note areas, depletion series, aged samples and following conventional FETs. The analysis of forensically important molecular targets within these fingermarks was also explored, focussing specifically on cocaine. The ability of MALDI-MS to provide ridge detail and chemical information highlights the forensic applicability of this technique and potential for the analysis of fingermarks deposited onto this problematic surface

    Emerging applications in mass spectrometry imaging; enablers and roadblocks

    Get PDF
    Mass spectrometry imaging (MSI) is a powerful and versatile technique able to investigate the spatial distribution of multiple non-labelled endogenous and exogenous analytes simultaneously, within a wide range of samples. Over the last two decades, MSI has found widespread application for an extensive range of disciplines including pre-clinical drug discovery, clinical applications and human identification for forensic purposes. Technical advances in both instrumentation and software capabilities have led to a continual increase in the interest in MSI; however, there are still some limitations. In this review, we discuss the emerging applications in MSI that significantly impact three key areas of mass spectrometry (MS) research—clinical, pre-clinical and forensics—and roadblocks to the expansion of use of MSI in these areas

    Geophysical signature of a World War i tunnel-like anomaly in the Forni Glacier (Punta Linke, Italian Alps)

    Get PDF
    Global warming and the associated glacier retreat recently revealed the entrance to an ice\u2013rock tunnel, at an altitude of 3c3600 m a.s.l., in the uppermost portion of the Forni Glacier in the Central Italian Alps. The tunnel served as an entrance to an Austro-Hungarian cableway station excavated in the rocks during the Great War just behind the frontline. A comprehensive geophysical survey, based on seismic and ground-penetrating radar profiling, was then undertaken to map other possibleWorldWar I (WWI) remains still embedded in the ice. The ice\u2013rock interface was reconstructed over the entire saddle and in the uppermost portion of the glacier. A prominent linear reflector was surprisingly similar to the common response of buried pipes. The reflector orientation, almost longitudinal to the slope, does not seem to be compatible with a glacial conduit or with other natural features. Numerical simulations of a series of possible targets constrained interpretation to a partly water-filled rounded shape cavity. The presence of a preserved WWI tunnel connecting Mount Vioz and Punta Linke could be considered a realistic hypothesis. The Forni glacier could be still considered polythermal and comprised of cold ice without basal sliding in its top portion
    corecore