2,974 research outputs found
A method to correct differential nonlinearities in subranging analog-to-digital converters used for digital gamma-ray spectroscopy
The influence on -ray spectra of differential nonlinearities (DNL) in
subranging, pipelined analog-to-digital converts (ADCs) used for digital
-ray spectroscopy was investigated. The influence of the DNL error on
the -ray spectra, depending on the input count-rate and the dynamic
range has been investigated systematically. It turned out, that the DNL becomes
more significant in -ray spectra with larger dynamic range of the
spectroscopy system. An event-by-event offline correction algorithm was
developed and tested extensively. This correction algorithm works especially
well for high dynamic ranges
Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure.
Inflammation enhances the secretion of sphingomyelinases (SMases). SMases catalyze the hydrolysis of sphingomyelin into phosphocholine and ceramide. In erythrocytes, ceramide formation leads to exposure of the removal signal phosphatidylserine (PS), creating a potential link between SMase activity and anemia of inflammation. Therefore, we studied the effects of SMase on various pathophysiologically relevant parameters of erythrocyte homeostasis. Time-lapse confocal microscopy revealed a SMase-induced transition from the discoid to a spherical shape, followed by PS exposure, and finally loss of cytoplasmic content. Also, SMase treatment resulted in ceramide-associated alterations in membrane-cytoskeleton interactions and membrane organization, including microdomain formation. Furthermore, we observed increases in membrane fragility, vesiculation and invagination, and large protein clusters. These changes were associated with enhanced erythrocyte retention in a spleen-mimicking model. Erythrocyte storage under blood bank conditions and during physiological aging increased the sensitivity to SMase. A low SMase activity already induced morphological and structural changes, demonstrating the potential of SMase to disturb erythrocyte homeostasis. Our analyses provide a comprehensive picture in which ceramide-induced changes in membrane microdomain organization disrupt the membrane-cytoskeleton interaction and membrane integrity, leading to vesiculation, reduced deformability, and finally loss of erythrocyte content. Understanding these processes is highly relevant for understanding anemia during chronic inflammation, especially in critically ill patients receiving blood transfusions
Observation of mutually enhanced collectivity in self-conjugate Sr
The lifetimes of the first 2 states in the neutron-deficient
Sr isotopes were measured using a unique combination of the
-ray line-shape method and two-step nucleon exchange reactions at
intermediate energies. The transition rates for the 2 states were
determined to be (E2;2) = 2220(270) efm for
Sr and 1800(250) efm for Sr, corresponding to large
deformation of = 0.45(3) for Sr and 0.40(3) for Sr. The
present data provide experimental evidence for mutually enhanced collectivity
that occurs at = = 38. The systematic behavior of the excitation
energies and (E2) values indicates a signature of shape coexistence in
Sr, characterizing Sr as one of most deformed nuclei with an
unusually reduced (4)/(2) ratio.Comment: Accepted for publication in Physical Review C Rapid Communicatio
The N terminus of the peroxisomal cycling receptor, Pex5p, is required for redirecting the peroxisome-associated peroxin back to the cytosol
Most newly synthesized peroxisomal matrix proteins are transported to the organelle by Pex5p, a remarkable multidomain protein involved in an intricate network of transient protein-protein interactions. Presently, our knowledge regarding the structure/function of amino acid residues 118 to the very last residue of mammalian Pex5p is quite vast. Indeed, the cargo-protein receptor domain as well as the binding sites for several peroxins have all been mapped to this region of Pex5p. In contrast, structural/functional data regarding the first 117 amino acid residues of Pex5p are still scarce. Here we show that a truncated Pex5p lacking the first 110 amino acid residues (DeltaN110-Pex5p) displays exactly the peroxisomal import properties of the full-length peroxin implying that this N-terminal domain is involved neither in cargo-protein binding nor in the docking/translocation step of the Pex5p-cargo protein complex at the peroxisomal membrane. However, the ATP-dependent export step of DeltaN110-Pex5p from the peroxisomal membrane is completely blocked, a phenomenon that was also observed for a Pex5p version lacking just the first 17 amino acid residues but not for a truncated protein comprising amino acid residues 1-324 of Pex5p. By exploring the unique properties of DeltaN110-Pex5p, the effect of temperature on the import/export kinetics of Pex5p was characterized. Our data indicate that the export step of Pex5p from the peroxisomal compartment ( in contrast with its insertion into the organelle membrane) is highly dependent on the temperature
Effect of photoperiod and host distribution on the horizontal transmission of Isaria fumosorosea (Hypocreales: Cordycipitaceae) in greenhouse whitefly assessed using a novel model bioassay
A model bioassay was used to evaluate the epizootic potential and determine the horizontal transmission efficiency of Isaria fumosorosea Trinidadian strains against Trialeurodes vaporariorum pharate adults under optimum conditions (25±0.5°C, ~100% RH) at two different photoperiods. Untreated pharate adults were arranged on laminated graph paper at different distributions to simulate varying infestation levels on a leaf surface. Four potential hosts were located 7, 14 and 21 mm away from a central sporulating cadaver simulating high, medium and low infestation levels, respectively. Percent hosts colonized were recorded 7, 12, 14 and 21 days post-treatment during a 16- and 24-h photophase. After 21 days, mean percent hosts colonized at the highest, middle and lowest infestation levels were 93 and 100%, 22 and 58%, 25 and 39% under a 16- and 24-h photophase, respectively. From the results, it was concluded that the longer the photophase, the greater the percentage of hosts colonized, and as host distance increased from the central sporulating cadaver, colonization decreased. The use of this novel model bioassay technique is the first attempt to evaluate the epizootic potential and determine the horizontal transmission efficiency of I. fumosorosea Trinidadian strains under optimal environmental conditions at different photoperiods. This bioassay can be used to assess horizontal transmission efficiency for the selection of fungi being considered for commercial biopesticide development
Observation of isotonic symmetry for enhanced quadrupole collectivity in neutron-rich 62,64,66Fe isotopes at N=40
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied
using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb
excitation reactions. The deduced E2 strengths illustrate the enhanced
collectivity of the neutron-rich Fe isotopes up to N=40. The results are
interpreted by the generalized concept of valence proton symmetry which
describes the evolution of nuclear structure around N=40 as governed by the
number of valence protons with respect to Z~30. The deformation suggested by
the experimental data is reproduced by state-of-the-art shell calculations with
a new effective interaction developed for the fpgd valence space.Comment: 4 pages, 2 figure
Multi-particle effects in non-equilibrium electron tunnelling and field emission
We investigate energy resolved electric current from various correlated host
materials under out-of-equilibrium conditions. We find that, due to a combined
effect of electron-electron interactions, non-equilibrium and multi-particle
tunnelling, the energy resolved current is finite even above the Fermi edge of
the host material. In most cases, the current density possesses a singularity
at the Fermi level revealing novel manifestations of correlation effects in
electron tunnelling. By means of the Keldysh non-equilibrium technique, the
current density is calculated for one-dimensional interacting electron systems
and for two-dimensional systems, both in the pure limit and in the presence of
disorder. We then specialise to the field emission and provide a comprehensive
theoretical study of this effect in carbon nanotubes.Comment: 22 pages, 8 figures (eps files
Identification of mixed-symmetry states in an odd-mass nearly-spherical nucleus
The low-spin structure of 93Nb has been studied using the (n,n' gamma)
reaction at neutron energies ranging from 1.5 to 3.0 MeV and the 94Zr(p,2n
gamma)93Nb reaction at bombarding energies from 11.5 to 19 MeV. States at
1779.7 and 1840.6 keV, respectively, are proposed as mixed-symmetry states
associated with the coupling of a proton hole in the p_1/2 orbit to the 2+_1,ms
state in 94Mo. These assignments are derived from the observed M1 and E2
transition strengths to the symmetric one-phonon states, energy systematics,
spins and parities, and comparison with shell model calculations.Comment: 5 pages, 3 figure
- …
