8 research outputs found
The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae
International audienceThe MastA (R) D68C test is a phenotypical test that allows the detection of extended-spectrum beta-lactamase (ESBL) production, even in AmpC-producing Enterobacteriaceae. We assessed its detection accuracy against a large collection of 106 Enterobacteriaceae isolates producing a wide diversity of well-characterized beta-lactamases (53 ESBL producers, 25 Amp. producers, seven AmpC and ESBL producers, five carbapenemase producers, three carbapenemase and ESBL producers, one AmpC, carbapenemase, and ESBL producer, three TEM-1 producers, three SHV-1 producers, three OXA-1 producers, and one hyperOXY producer, ATCC 35218, ATCC 25922 [a beta-lactamase-negative control strain]). The results were compared with those of the double disk test and the Clinical and Laboratory Standards Institute (CLSI) confirmatory test for the detection of ESBL. The sensitivity was 90.6 % for the synergy test, 87.5 % for the CLSI method, and only 73.1 % for D68C, which, however, reached 92.1 % if the strains for which supplementary investigations were recommended and the complex mutant TEM (CMT)-producing strains were excluded versus 94.1 % and 88.2 % for the other methods. The specificity was 90.2 % for the synergy test and 100 % for the CLSI method and D68C. D68C was also efficient in detecting AmpC-overproducing strains (sensitivity = 97 %, specificity = 95.9 %): among the 74 strains belonging to natural AmpC-producing species, the sensitivity and specificity were 100 and 94.8 %, respectively. The MastA (R) D68C-test is a promising method that is easy to perform for the detection of current ESBLs and could also be useful for the detection of plasmid-encoded AmpC enzymes (sensitivity = 100 %)
Three cases of cutaneous mucormycosis with Lichtheimia spp. (ex Absidia/Mycocladus) in ICU. Possible cross-transmission in an intensive care unit between 2 cases
International audienc
Use of<i>m</i>-[<sup>131</sup>I]Iodobenzylguanidine in the Treatment of Malignant Pheochromocytoma
The MAST® D68C test: an interesting tool for detecting extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae
About the usefulness of contact precautions for carriers of extended-spectrum beta-lactamase-producing Escherichia coli
Covalent docking of large libraries for the discovery of chemical probes
International audienceChemical probes that form a covalent bond with a protein target often show enhanced selectivity, potency and utility for biological studies. Despite these advantages, protein-reactive compounds are usually avoided in high-throughput screening campaigns. Here we describe a general method (DOCKovalent) for screening large virtual libraries of electrophilic small molecules. We apply this method prospectively to discover reversible covalent fragments that target distinct protein nucleophiles, including the catalytic serine of AmpC beta- lactamase and noncatalytic cysteines in RSK2, MSK1 and JAK3 kinases. We identify submicromolar to low-nanomolar hits with high ligand efficiency, cellular activity and selectivity, including what are to our knowledge the first reported reversible covalent inhibitors of JAK3. Crystal structures of inhibitor complexes with AmpC and RSK2 confirm the docking predictions and guide further optimization. As covalent virtual screening may have broad utility for the rapid discovery of chemical probes, we have made the method freely available through an automated web server (http://covalent.docking.org/)
