1,629 research outputs found

    Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance

    Get PDF
    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is precession of the non-equilibrium spin population of the semiconductor in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become less effective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet (the spin injector and detector) to precess at the ferromagnetic resonance frequency, an electrically generated spin accumulation can be detected from 30 to 300 K. At low temperatures, the distinct Larmor precession of the spin accumulation in the semiconductor can be detected by ferromagnetic resonance in an oblique field. We verify the effectiveness of this new spin detection technique by comparing the injection bias and temperature dependence of the measured spin signal to the results obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (< 100 psec), a regime that is not accessible in semiconductors using traditional Hanle techniques.Comment: 4 figure

    General Relativistic Electromagnetic Fields of a Slowly Rotating Magnetized Neutron Star. I. Formulation of the equations

    Full text link
    We present analytic solutions of Maxwell equations in the internal and external background spacetime of a slowly rotating magnetized neutron star. The star is considered isolated and in vacuum, with a dipolar magnetic field not aligned with the axis of rotation. With respect to a flat spacetime solution, general relativity introduces corrections related both to the monopolar and the dipolar parts of the gravitational field. In particular, we show that in the case of infinite electrical conductivity general relativistic corrections due to the dragging of reference frames are present, but only in the expression for the electric field. In the case of finite electrical conductivity, however, corrections due both to the spacetime curvature and to the dragging of reference frames are shown to be present in the induction equation. These corrections could be relevant for the evolution of the magnetic fields of pulsars and magnetars. The solutions found, while obtained through some simplifying assumption, reflect a rather general physical configuration and could therefore be used in a variety of astrophysical situations.Comment: A few typos corrected; matches the versions in MNRA

    Turning Points in the Evolution of Isolated Neutron Stars' Magnetic Fields

    Get PDF
    During the life of isolated neutron stars (NSs) their magnetic field passes through a variety of evolutionary phases. Depending on its strength and structure and on the physical state of the NS (e.g. cooling, rotation), the field looks qualitatively and quantitatively different after each of these phases. Three of them, the phase of MHD instabilities immediately after NS's birth, the phase of fallback which may take place hours to months after NS's birth, and the phase when strong temperature gradients may drive thermoelectric instabilities, are concentrated in a period lasting from the end of the proto--NS phase until 100, perhaps 1000 years, when the NS has become almost isothermal. The further evolution of the magnetic field proceeds in general inconspicuous since the star is in isolation. However, as soon as the product of Larmor frequency and electron relaxation time, the so-called magnetization parameter, locally and/or temporally considerably exceeds unity, phases, also unstable ones, of dramatic changes of the field structure and magnitude can appear. An overview is given about that field evolution phases, the outcome of which makes a qualitative decision regarding the further evolution of the magnetic field and its host NS.Comment: References updated, typos correcte

    Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    Get PDF
    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex~ ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes it feasible to observe its less common isotopologues. As a step in our investigation of C-13 fractionation patterns in the ISM, we here present comparisons between observations of the C-13 fraction in formaldehyde, and chemical fractionation models

    Non-detection of a pulsar-powered nebula in Puppis A, and implications for the nature of the radio-quiet neutron star RX J0822-4300

    Get PDF
    We report on a deep radio search for a pulsar wind nebula associated with the radio-quiet neutron star RX J0822-4300 in the supernova remnant Puppis A. The well-determined properties of Puppis A allow us to constrain the size of any nebula to less than 30 arcsec; however we find no evidence for such a source on any spatial scale up to 30 arcmin. These non-detections result in an upper limit on the radio luminosity of any pulsar-powered nebula which is three orders of magnitude below what would be expected if RX J0822-4300 was an energetic young radio pulsar beaming away from us, and cast doubt on a recent claim of X-ray pulsations from this source. The lack of a radio nebula leads us to conclude that RX J0822-4300 has properties very different from most young radio pulsars, and that it represents a distinct population which may be as numerous, or even more so, than radio pulsars.Comment: 5 pages, including 2 embedded EPS figures, uses emulateapj.sty. Accepted to ApJ Letters (minor changes made following referee's report

    Literacy shapes thought: the case of event representation in different cultures

    Get PDF
    There has been a lively debate whether conceptual representations of actions or scenes follow a left-to-right spatial transient when participants depict such events or scenes. It was even suggested that conceptualizing the agent on the left side represents a universal. We review the current literature with an emphasis on event representation and on cross-cultural studies. While there is quite some evidence for spatial bias for representations of events and scenes in diverse cultures, their extent and direction depend on task demands, one‘s native language, and importantly, on reading and writing direction. Whether transients arise only in subject-verb-object languages, due to their linear sentential position of event participants, is still an open issue. We investigated a group of illiterate speakers of Yucatec Maya, a language with a predominant verb-object-subject structure. They were compared to illiterate native speakers of Spanish. Neither group displayed a spatial transient. Given the current literature, we argue that learning to read and write has a strong impact on representations of actions and scenes. Thus, while it is still under debate whether language shapes thought, there is firm evidence that literacy does
    corecore